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Ab s t r Ac t
With the rapid growth of population and increasing urbanization and industrialization, environmental pollution is becoming a serious 
concern worldwide. Different type of pollutants is released into the water bodies enormously from the expansive range of industries. 
Among all the pollutants, dyes are the major used noxious waste discharged by these productions. Even at minute content (< 1ppm), 
dyes are posing a detrimental threat to the ecosystem and human health risks. Recently, nanotechnology has emerged as an efficient 
technology for the remediation of environmental pollutants from water. Green synthesis of nanoparticles (NPs) can be done to degrade 
molecules of dyes in wastewater. Various nanoparticles such as iron, palladium, and cerium dioxide using Camellia sinensis, Boswellta 
serrata, and Azardirachta indica extracts have been reported successfully for the remediation of various dyes like rhodamine B, methylene 
blue, etc. Removal of dyes from the wastewater using green synthesized nanoparticles with the help of microbes or plant extracts is a 
sustainable technique, i.e., by the use of this technique, our environment will not get polluted, and its quality will also be maintained. 
The present review discusses the classification of dyes, nanoparticle formation by using microbes and plant extract, and, finally, the 
remediation of dye using such nanoparticles.
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In t r o d u c t I o n

Along with growing urbanization, industrialization, and rapid 
advancement of population, environmental pollution, and 

other crucial difficulties are becoming critical globally. Various 
types of pollutants discharged from the diverse industries are 
the major source of pollution (Yang et al., 2010; Tang et al., 2014; 
Chen et al., 2015; Wu et al., 2017; He et al., 2018). These industrial 
pollutants modify the quality of water bodies. Wastewater 
discharges from chemical industries contain toxic substances 
such as heavy metal ions, dyes, and organic pollutants. One of 
the harshest water pollution sources is dye effluent discharge 
from various industries (Mua and Wang, 2016). A large amount 
of dyes is produced annually from the different industries such 
as textile, paint, cosmetic, paper, plastic, leather, agricultural 
research, hair coloring, photo-electrochemical cell, light-
harvesting array, pharmaceutical and nutrition industries. 
However, the exact estimation of the amount of dyes that are 
discharged from these industries is a tough task (Khataeea 
and Kasiri, 2010). Approximately 70,000 tons is the worldwide 
annual production of dyes, whose commercial types are around 
100,000 (Robinson et al., 2001). Discharge of dyes into water 
bodies without proper treatment has caused serious problems 
to aquatic life and human health (McKay, 1982; Shimada et al., 
2010; Khan et al., 2013).

Dyes are commonly observed to be carcinogenic and 
mutagenic, as well as pernicious in nature. In the natural 
environment, dyes retain their color and structural stability 
as well as show strong resistance to microbial degradation 
under the exposure to sweat, sunlight, soil and bacteria (Banat 
et al., 1996; Robinson et al., 2001; Baban et al., 2010; Pathakoti 
et al., 2018). Rate of photosynthesis reduces because these 
dyes prevent the penetration of light across the water bodies, 
therefore the level of dissolved oxygen of entire aquatic 
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ecosystem getting affected which cause aesthetic damage to 
the water bodies (Imran et al., 2015; Hassan and Carr, 2018; Lellis 
et al., 2019). When dyes enter into the drinking water system, they 
impart serious health hazards. Dye effluent contains chemicals 
that are carcinogenic, mutagenic, or teratogenic, which 
can cause damage to genetic material in various organisms 
(Weisburger, 2002; Umbuzeiro et al., 2005). In humans, some 
dyes have been linked to bladder cancer; dysfunction of the 
kidneys, reproductive system, liver, brain and central nervous 
system (Medvedev et al., 1988; Kadirvelu et al., 2003; Dinçer et 
al., 2007; Shen et al., 2009). Only 1.0 mg L-1 of dye concentration 
in drinking water could impart a significant color, making it unfit 
for human consumption (Malik et al., 2007). So the remediation 
of dyes is essential even though at a very minute concentration 
of theirs is present in the environment.

Dyes have complex structures, stable, non-biodegradable, 
and remaining ecosystems for a longer time. For their complete 
degradation, there is a constant need to have an effective 
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method that can efficiently remove these dyes from wastewater. 
However, such a method for dye removal has remained a 
challenge for scientists because conventional methods for 
dye removal were not very efficient and economical. Many 
conventional treatment methods applied for the remediation 
of dyes from wastewater include physical decolorization 
(sedimentation, filtration adsorption, and reverse osmosis), 
chemical decolorization (neutralization, recovery, chemical 
oxidation, ion exchange methods), and biological decolorization 
by using bacteria, fungi, and actinomyces (Morshedi et al., 2013). 
The drawback of physical methods is high operational cost, 
while drawback for the chemical method is the production of 
a concentrated sludge (Robinson et al., 2002). The biological 
method takes a long time for degradation, and for some dyes, 
this method has a low degradation efficiency. Moreover, the 
management and start-up of biological techniques is a tricky 
process (Lin et al., 2008; Shan et al., 2008; Yadav et al., 2012). 
Consequently, there is an urgently needed technique for dye 
remediation, which should be cost-effective, eco-friendly, and 
have high removal efficiency for decolorization of wastewater 
discharges from the various industries.

Nanotechnology is an emerging field that is being used in 
several applications to improve the quality of the environment. 
It is a field of applied science that is concerned with materials 
and systems whose structure and components exhibit novel 
and significantly improved biological, chemical, and physical 
properties, owing to their nanosized structure. Generally, 
nanotechnology refers to materials of size 100 nanometer 
(nm) or smaller in at least one dimension, and it involves the 
development of materials or devices in this size range (Rawtani 
et al., 2018). Various nanomaterials, such as a nanoparticle, 
nanofiber, nanotubes, nanowire, nanorods, nanoribbon, etc. are 
used for remedial techniques. But out of these, nanoparticles 
are of great scientific interest for the remediation because 
of their small size and relatively large reactive surface area. 
Different methods such as physical, chemical, biological, and 
hybrid processes are used to synthesize myriad nanoparticles 
(Pandey et al., 2016; Rawtani et al., 2017; Tharmavaram et al., 2017, 
2018; Rawtani et al., 2019). However, physical methods are too 
expensive, while chemical methods create some adverse effects 
on our environment and are very harmful to living organisms 
as well as human health (Panigrahi et al., 2004; Narayanan and 
Sakthivel, 2010; Thakkar et al., 2010). These methods are not 
much suitable for wide-scale production because of demerits 
such as high preparation costs, consumption of extraordinary 
energy, use of hazardous organic solvents, production of 
hazardous intermediates, and harmful waste products, which 
leads to environmental pollution and several biological risks. 
During the formation of nanoparticles, aggregation of particles 
occurs due to attractive forces between the nanoparticles. 
Consequently, there is a requirement to add some capping 
agents to prevent aggregation and attain the uniformity of the 
product. All these incidents are responsible for the necessity 
of improved or appropriate alternative technology, which 
is consistently good for the development of nanoparticles 
and also is environmentally friendly. For the remediation of 
different pollutants from the environment, green technology is 
recommended as the superior-most technique because in this 
technique biogenic substances or natural substances such as 

plants or microbes are used as a reducer and capping agents. 
Nanoparticles derived from green synthesis using microbe or 
plant extract have no toxic substances, and their by-products are 
also eco-friendly. So as far as remedial processes are concerned, 
it is evident that green synthesis of nanoparticles is the best 
technique.

In this regard, this review focuses on the recent developments 
for the remediation of dyes from industrial wastewater by using 
nanoparticles, which are synthesized by greener routes involving 
extract of plants, microbes, and other natural products. Previous 
studies majorly focused on the remediation of various dyes using 
nanoparticles synthesized by physical and chemical methods. 
The novelty of present review summarizes the classification 
of dyes of various aspects such as on their sources, attached 
chromophore and their applications in various sectors, synthesis 
of nanoparticles with the help of green technology, and these 
nanoparticles applied for the remediation of various dyes which 
was not focused by the past reviews.

cAt e g o r I z At I o n o f dye s

Organic compounds which are have colored substances called 
as dyes. When these colored substances or dyes applied to 
some substrates, these colored substances get tied up or bind 
to these substrates chemically and impart permanent color to 
these substrates. Any type of substrate such as fur, hair, paper, 
plastics, cosmetics, textiles is used for the coloration from dyes. 
The imparted color is not removed by washing with water, 
detergents, or exposure to light. Dyes are used by diverse 
industries such as plastic, paint, textiles, food, etc. (Chincholi et 
al., 2014; Yagub et al., 2014). Various types of manner occur for 
the categorization of dyes such as categorized by the material 
source, i.e., dyes obtained from which kind of source, naturally 
or synthetically; categorization by the attached chromophores; 
and categorization by application (Fig. 1).

Categorization by the Material Source
This type of categorization is very familiar. According to this 
categorization, dyes are of two types: one is a natural dye, and 
the other is a synthetic dye.

Natural dyes
These dyes or colorants are derived from plants, animals, and 
minerals. As the name suggests, natural dyes are derived 
naturally from diverse plants or plant parts (wood, root, bark, 

Fig. 1: Dye classification
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and stem), fungi, and lichens. Some minerals (sangraj, lajerd, gem, 
sindur, and sajeda) are also used as natural dyes.

Synthetic dyes
Now a day, synthetic dyes are used extensively in almost all 
places. The production of synthetic dyes is economical, as well 
as they are very bright in color, and their application to textile 
is uncomplicated. These reasons make synthetic dye’s usage to 
be ubiquitous. Classes of synthetic dyes are acid dyes, azo dyes, 
basic dyes, and mordant dyes.

Categorization by the Attached Chromophore
Dyes are categorized by chromophores, which are found in the 
structure of dyes.

Azo chromophore
Azo dyes have gained the most significant among all the dyes 
available. They are extensively useful in industries such as 
textiles, food, and leather. In the structure of these dyes, the azo 
group is present, which is normally named as azo. Sometimes, 
the dye may also contain two, three, four, and more azo groups, 
which are named as disazo, trisazo, tetrakisazo, and polyazo, 
respectively. Azo dyes can supply yellow/red and blue/brown 
dyes mostly. Various azo dyes are solvent yellow 14, disperse red 
13, disperse blue, reactive brown 1, acid black 1, direct green 26, 
and direct black 19.

Anthraquinone chromophore
This class of dyes is the second most significant of all the dyes. 
Some dyes of anthraquinone are very oldest, and they were 
used in the process of mummification. Almost all the major 
natural red dyes are anthraquinones (Gordon and Gregor, 1983). 
Anthraquinone group, which is generally colorless, is present in 
the ring structure, and their position defines the anthraquinone 
dyes. When these dyes are used commercially, some amino or 
hydroxyl groups are added in the ring structure at α position. 
Anthraquinone dye imparts the combined properties, and 
generally, these dyes are used for the shades of red and blue.

Indigoid chromophore
For the coloration of different textiles such as cotton and wool 
indigoid, dyes are very utilitarian. Many indigoid dyes have 
been synthesized using only indigo. These dyes are used mainly 
for denim jeans and also jackets for the coloration. Various 
expensive, branded, and luxurious clothes were dyed-through 
these dyes. Some dyes of this class were so costly that poor 
community was not capable of affording garments that were 
dyed with these dyes.

Nitroso and nitro dyes
Nitroso dyes are those compounds which carry chromophore 
named as nitroso and -OH as auxochrome. This nitroso group 
involved in a carbon or nitrogen atom. Sometimes, this nitroso 
group in some substances gets involved with an oxygen atom, 
and then named as nitrites, while sometimes called nitrosyls 
when involved with a metal ion. The molecules of these dyes 
were perfect for the penetration of polyester fibers, for example, 
disperse dyes. These dyes are also very useful for the coloration 
of papers, for example: Acid Green 1.

Triarylmethane dyes
Triarylmethane dyes were produced synthetically and derived 
from the triphenylmethane. Auxochromes (amino, hydroxyl) 
present in these dye are responsible for their deep color. Some 
examples of these are methyl violet, malachite green, and 
phenol dyes.

Categorization by the Application

Reactive dyes
The reactive group is found in the structure of reactive dyes; 
that is why these dyes are named as reactive dyes. These are 
the only dyes that carry the reactive groups in their structure, 
and this reactive group is responsible for the establishment of a 
covalent bond between the dye molecule and respective fiber 
such as cotton, wool, and nylon.

Disperse dyes
The solubility of disperse dyes in water is very low, and are 
sometimes called insoluble or non-ionic dyes. Polyesters, nylon, 
acrylic are the target fibers for dyeing with these dyes. The 
requirements at the process of dying are that these dyes need 
a dispersing agent, high temperature, and acidic condition. 
Disperse dyes are derived from nitro, anthraquinone, and azo 
groups.

Direct dyes
Generally, direct dyes are also termed as substantive dyes, i.e., 
these dyes are attracted to the textiles by some physical forces. 
Substantivity is quantified by the proportion or the degree of 
attraction that occurs between the molecules of dyes and the 
textile. These dyes are soluble in water, and during the process 
of dying, these dyes need an alkaline medium.

Vat dyes
Cellulose fibers are the target fibers for dyeing by using vat dyes. 
Vat dyes are poorly dissolved in water, but for the dyeing process, 
it needs to be in its soluble form, which is attained by the aid 
of reducing agents (e.g., sodium dithionite). After attaining its 
soluble form, they attached to the respective fiber and imparted 
the strong color to the fabric.

Sulfur dyes
Like vat dyes, sulfur dyes are also water-insoluble, and these 
dyes also require reducing agents (sodium sulfide, sodium 
hydrosulfide) for attaining their soluble form. During the 
process of dying, the reducing agent aid in the dissolution of 
dye particles and facilitate the absorption of dyes into the fabric.

Cationic (basic) dyes
These dyes are also named as cationic dyes. The reason behind 
the name of cationic dye is the color production. At the time of 
ionization of the salts of organic bases, the positively charged 
cation and negatively charged anion are produced, and the 
produced cation is responsible for the production of color. The 
uses of basic dyes are mainly in the textile industry, where they 
are employed to color the fabrics. The target fibers of these 
dyes are wool, silk, cells/tissues of humans (e.g., safranin and 
crystal violet).
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Acid dyes
The solubility of acid dyes is very high in water. The target fibers 
are silk, wool, and protein. Various types of bonds (van der Waals, 
ionic, and hydrogen) are established by the molecules of dyes 
with the respective fibers.

Solvent dyes
Solvent dyes are those dyes which do not solubilize in water and 
are much soluble in organic solvents. The uses of solvent dyes are 
that they utilize the coloration of organic solvent, waxes, fuels, 
plastics, and glass. Most of the solvent dyes are azo dyes, e.g., red 
and yellow dyes, and anthraquinone dyes, e.g., green and blue. 

gr e e n syn t h e s I s o f nA n o pA r t I c l e s

Nanoparticles can be synthesized by various methods that are 
categorized into two approaches: top to down and bottom to 
up (Figs 2 and 3). By the employment of the top-down approach, 
the nanoparticle is synthesized by the reduction of size from 
minute particles, and these minute particles are formed from the 
bulk material. Different techniques utilized in the nanoparticle 
formation through this approach include arc discharge, pulsed 
laser ablation, spray pyrolysis, evaporation-condensation, and 
lithography (Rafique et al., 2017). These are the physical methods, 
where physical forces are involved in the attraction of nanoscale 
particles and the formation of a large, stable, well-defined 
nanostructure. Limitations of the physical method involve the 
use of expensive equipment for the synthesis, high temperature, 
and pressure (Chandrasekaran et al., 2016), large space area for 
setting up of instruments, defective surface formation, and low 
production rate.

By the employment of the bottom-up approach, 
nanoparticles are obtained by the use of chemical and biological 
methods. Under this approach, atoms clump and form clusters or 
new nuclei, which at last develop into a nanoparticle. Different 
techniques occur in the nanoparticle synthesis by chemical 
methods such as solvothermal, pyrolysis, co-precipitation, 
sonochemical, and electrochemical (Ealias and Saravanakumar, 
2017). Chemical synthesis methods are not eco-friendly and 
involve the usage of toxic chemicals, formation of hazardous 
by-products, which create biological risk and contamination 
from precursor chemicals (Thakkar et al., 2010; Vijayan et al., 
2016). On the whole, the conclusion is that these conventional 
methods for nanoparticle synthesis have certain drawbacks at 
the time of the fabrication process of nanoparticles. In addition, 
the major limitation is when these synthesized nanoparticles 
are applied to certain fields like medical, agriculture, where they 
create toxicity and alter the quality of our ecosystem (Ahmed et 

al., 2016). Consequently, there is a growing exigency to establish 
clean, non-toxic, and environment-friendly procedures for 
nanoparticle synthesis.

Nanoparticle synthesis by green route is fascinating all 
investigators because the use of the green route for the 
generation of nanoparticles has overcome all the downsides 
or limits which come when the chemical or physical method 
is adopted for the development of nanoparticles. In the 
chemical methods, chemicals which were used in the process 
of nanoparticle synthesis were too expensive, and also, they are 
toxic as well as their by-products are also very hazardous, but if 
we select the green route for nanoparticle genesis, this problem 
is controlled because, in the development of nanoparticles 
through green route, the process is completed by the use of 
non-toxic natural products. Physical methods of nanoparticle 
synthesis consume more energy, which was also not good, and 
that can also be overcome by green synthesis. The generation of 
nanoparticles by the green route method or biological method 
adopts the bottom-up approach. In the process of synthesizing 
nanoparticles from the biological method, three most important 
selections are required: choice of the solvent medium which is 
for the development of nanoparticles; choice of environment-
friendly reducer; and choice of stabilizer agent which acts as 
capping agent (Narayanan and Sakthivel, 2011; Singh et al., 2011).

For the production of advanced nanoparticles, nature has 
provided many ways, and sometimes these biogenic or natural 
products which are helpful in the generation of nanoparticles 
are termed as the laboratory of the natural products especially 
in the fabrication of metallic and metal oxide nanoparticles 
(Sharma et al., 2019). The biological approach includes different 
types of microorganisms such as bacteria (Shivaji et al., 2010), 
fungi (Chan and Mat Don, 2013), yeast (Kumar et al., 2011), and 
plant extract (Akhtar et al., 2013) (Fig. 4).

Nanoparticle Synthesis using Microorganisms
In the generation or synthesis of diverse type of nanoparticles, 
different microbes have acted as utilitarian agents in the 
development of desirably sized nanoparticles. Different 
microbes are used in the process of nanoparticle genesis due to 
their simplicity to work, medium for the evolution of microbes is 
cheap, and they are maintainable. In previous years, the synthesis 
of nanoparticles using microbes has enlarged comprehensively 
due to its immense application. The generation of metallic 
nanoparticles through microbes is an appropriate approach. 
Gold, silver, and cadmium sulfide nanoparticles are extensively 

Fig. 3: Synthesis of nanoparticles by various methodsFig. 2: Approaches for nanoparticle synthesis
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synthesized by microbial cells as these cells are considered 
a potential bio-factories for these nanoparticles fabrication. 
Various biomolecules (enzymes, vitamins, polysaccharides, 
amino acids) perform as a capping agent and reducing agent 
for the generation of nanoparticles. These biomolecules can 
be obtained from the extracts of microbes. It seems that 
microbes play a role in providing the nucleation centers and 
establish conditions for obtaining highly disperse nanoparticle 
systems. Microbes prevent aggregation and have the potential 
to immobilize nanoparticles by providing a viscous medium.

The precise mechanism behind the construction of 
nanoparticles via microbes is not known up until now because, 
for the duration of the fabrication of nanoparticles, diverse 
microbes respond in a different way. Inorganic materials are 
produced by microbes either intracellularly or extracellularly, 
but the mechanisms are different with different microbial cells. 
For the intercellular genesis of nanoparticles, the cell wall of 
microorganisms performs an extensive character. Microbes 
possess enzymes in the cell wall, which help in the metal ion 
reduction, and these cations get fixed with the negatively 
charged cell wall. This is the intercellular manner of development 
of nanoparticle. Fungi also secrete the enzyme named as nitrate 
reductase, which promotes the metal ion reduction and helps 
the formation of nanoparticles extracellularly (Joerger et al., 
2001; Nair and Pradeep 2002; Durán et al., 2005; He et al., 2007; 
Kumar et al., 2007a,b; Ingle et al., 2008).

First of all, the nucleation of clusters in the bacterial cell stake 
place for the generation of nanoparticles (Shivaji et al., 2010). 
In the second step of the development of nanoparticles, the 
bacterial cell and the clusters of metal bind electrostatically to 
each other. After binding, the formed nanoparticles travel into 
the bacterial cell wall. Several bacterial species are reported for 
the fabrication of silver nanoparticles, such as Aeromonas sp. (Fu 
et al., 2006), Enterobacter cloacae (Shahverdi et al., 2007), Bacillus 
subtilis (Saifuddin et al., 2009), Pseudomonas stutzeri AG259 (Klaus 
et al., 1999), Proteus mirabilis (Nasrin et al., 2009), Cornebacterium 
sp. (Huang et al., 2007), Plectonema boryanum (Lengke et al., 

2007), and Lactobacillus sp. (Armendariz et al., 2004). Regarding 
the fabrication of gold nanoparticles, some reported bacterial 
species are Rhodo pseudomonas capsulate (Bai et al., 2009), 
Marinobacter Pelagius sp. (Joerger et al., 2000), Lactobacillus sp. 
(Tom et al., 2003), Pseudomonas aeruginosa (Nayantara and Kaur, 
2018), Stenotrophomonas malophilia (Sharma et al., 2012), E. coli 
K12 (Srivastava et al., 2013), Geobacillus sp. strain ID17 (Narayanan 
and Sakthivel, 2008), Thermomonospora sp. (Kasthuri et al., 
2008), Rhodococcus sp. (Park et al., 2011), and Delftia acidovorans 
(Johnston et al., 2013).

Some other nanoparticles; synthesis has also been 
reported in previous literature by using bacterial strains such 
as cadmium sulphide (CdS NPs) nanoparticles using Klebsiella 
aerogenes (Holmes et al., 1995), Escherichia coli (Sweeney et 
al., 2004), Rhodobacter sphaeroides (Bai et al., 2009); Palladium 
(Pd) nanoparticles by Clostridium butyricum, Citrobacter braakii, 
Klebsiella pneumoniae, Enterococcus faecium, Escherichia coli, 
Bacteroides vulgatus (Hennebel et al., 2011), and Desulfovibrio 
desulfuricans (Yong et al., 2002). Serratia sp. for copper oxide 
(CuO, Cu2O, Cu4O3) nanoparticles, Actinobacters spp. for iron 
oxide (Fe3O4) nanoparticles, Lactobacilli for Titanium dioxide 
(TiO2) nanoparticles, Actinobacters spp. for silicon/silica 
nanoparticles, Shewanella putrefaciens for uranium dioxide 
(UO2) nanoparticles, Lactobacillus sporoge for zinc oxide (ZnO) 
nanoparticles (Durán and Seabra, 2012). Selenium and tellurium 
nanoparticles have been synthesized by Stenotrophomonas 
maltophilia and Ochrobactrum sp. (Zonaro et al., 2015).

Several species of fungi have been reported successful in 
the previous studies, and it has been observed that fungal cells 
assist in fabricating monodispersed nanoparticles. Fungal cells 
are rich sources of enzymes, which make them a tremendous 
contender for the production of nanoparticles. As compared 
to bacteria, fungi synthesize a great amount of nanoparticles 
because fungi secrete more amount of proteins, which leads 
to higher productivity of nanoparticles. Various fungal species 
were used in the production of silver (Ag) nanoparticles, such 
as Verticillium spp. (Mukherjee et al., 2001), Aspergillus fumigatus 
(Bhainsa and D’souza, 2006), Aspergillus flavus (Vigneshwaran et 
al., 2007), white-rot fungi (Gudikandula et al., 2017), Aspergillus 
terreus (Li et al., 2012), Fusarium oxysporum (Ahmad et al., 2003c), 
Humicola sp. (Syed et al., 2013), Macrophomina phaseolina 
(Chowdhury et al., 2014). Gold nanoparticles (AuNPs) have 
been synthesized by Fusarium oxysporum (Mukherjee et al. 
2002), Collitotrichum sp. (Shankar et al., 2003), Trichothecium 
sp. (Ahmad et al., 2005), Verticillium luteoalbum (Erasmus et al., 
2014), and Aspergillusoryzae var. viridis (Binupriya et al., 2010). 
Fusarium oxysporum fungal species are also used in some other 
nanoparticles’ synthesis such as cadmium sulfide (Ahmad 
et al., 2002), silica, titanium (Bansal et al., 2005), cadmium 
selenide (CdSe) (Kumar et al., 2007a), zinc oxide (Baskar et al., 
2017), zirconia (Bansal et al., 2004), bismuth oxide (Bi2O3). Apart 
from this, nanoparticles of iron oxide (Fe3O4) from Fusarium 
oxysporum and Verticillium sp., antimony trioxide (Sb2O3) from 
Saccharomyces cerevisiae (Durán and Seabra, 2012), magnetite 
from the species of Fusarium oxysporum and Verticillium sp. 
(Bharde et al., 2006).

Algae is also used in the biosynthesis of nanoparticles 
because algae have the ability to accumulate heavy metals. 
Algae is very beneficial in multiple fields because a kind of 

Fig. 4: Advantages of green synthesized nanoparticles
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polysaccharide named fucoidans, which is secreted from the 
cell wall of algae, is very advantageous since it has properties 
such as anti-cancerous, anti-viral agent, slow aging agent, and 
anti-inflammatory. Metabolites are present in the algal cells, 
which perform the role of stabilizing and reducing agents for 
attaining the size of NPs at the range of nanometer. Various algal 
species were reported successfully in the generation of diverse 
nanoparticles. Silver (Ag) NPs were produced by Chaetomorpha 
linum (Kannan et al., 2013), Pterocladia capillacae, Jania rubins, 
Ulva faciata, and Colpmenia sinusa (El-Rafie et al., 2013), Hypnea 
musciformis (Selvam and Sivakumar, 2015), and Enteromorpha 
flexuosa (Yousefzadi et al., 2014). Sargassum muticum was used in 
the production of gold (Au) NPs (Namvar et al., 2015), Tetraselmis 
kochinensis (Senapati et al., 2012), Ecklonia cava (Ghodake and 
Lee, 2011), Chlorella vulgaris (Annamalai and Nallamuthu, 2015), 
Padina gymnospora (Singh et al., 2013), and Fucus vesiculosus 
(Mata et al., 2009). Sargassum myriocystum, Caulerpa peltata, 
and Hypnea valencia were used in the production of zinc oxide 
(ZnO) NPs (Nagarajan et al., 2013), Gracilaria gracilis (Francavilla 
et al., 2014). Ferric oxide (Fe3O4) NPs have been synthesized by 
Sargassum muticum (Mahdavi et al., 2013), copper oxide NPs by 
Bifurcaria bifurcate (Abboud et al., 2014), cadmium sulfide NPs 
by Phaeodactylum tricornutum (Scarano and Morelli, 2003), and 
ferrihydrite NPs by Euglena gracilis (Brayner et al., 2012).

In the fabrication process of various types of nanoparticles, 
actinomycetes are also a very fabulous candidate because 
they have the characters of both fungi and bacteria, and also 
the genetic modification is very facile for the development 
of desirably sized nanoparticles. Metallic nanoparticles are 
produced in large numbers with the aid of actinomycetes. 
Gold nanoparticles were synthesized by Thermomonospora sp. 
(Ahmad et al., 2003b) and Rhodococcus sp. (Ahmad et al., 2003a). 
Streptomyces hygroscopicus (Husseiny et al., 2007), Gordonia 
amarae (Montes et al., 2011), Gordonia amicalis (Baker and Satish, 
2015), Streptomyces fulvissimus (Balagurunathan et al., 2011), 
Streptomyces sp. (Meysam et al., 2015), and Streptomyces viridogens 
(Kumar et al., 2011). Actinomycetes such as Streptomyces sp., 
Pilimeliacolu mellifera, and Rhodococcus sp. have been used in the 
development of silver (Ag) nanoparticles (Patrycja et al., 2016). 
Various species of yeast are also used in nanoparticle synthesis. 
Some reported literature for gold nanoparticles is Pichia jadinii 
(Gericke and Pinches, 2006), Yarrowia lipolytica 3589 (Ganesh 
Babu and Gunasekaran, 2009), Hansenula anomala (Waghmare 
et al., 2014), and Candida guilliermondii (Tripathi et al., 2014), 
Magnusiomycesingens (Venkatesan et al., 2014). Cadmium 

sulfide nanoparticles synthesized by Candida glabarata, and 
Schizosaccaromyces pombe (Agnihotri et al., 2009). Amorphous 
iron phosphate NPs by Saccharomyces cerevisiae (He et al., 2009). 
Saccharomyces cerevisiae was also used in titanium dioxide 
nanoparticle (Jha et al., 2009a) and antimony trioxide (Sb2O3) 
nanoparticles’synthesis (Jha et al., 2009b).

Nanoparticle Synthesis using Plant Extract
The synthesis of plant-based nanoparticles is a simple one-step 
process. In the plant-based nanoparticle fabrication, a wide 
range of green reducing and capping agents are used, which 
can be cost-effective, biocompatible, non-hazardous, and eco-
friendly. Biomolecules and the existence of functional groups 
in the extracts of plant aid in the generation of nanoparticles 
because during the synthesis process, they perform the role of 
capping and reducing agents.

As compare to microbes, plant extract could be an efficient 
approach according to previous reports (Iravani, 2011) because 
the plant-based synthesis of nanoparticles produces highly 
stabilized nanoparticles in a single step process and in a very 
short duration.

Silver nanoparticles were synthesized from the solution of 
silver nitrate with the help of the various type of plant extracts 
such as Alternanthera dentate leaf extract (Kumar et al., 2014), 
Acorus calamus rhizome (Nakkala et al., 2014), tea extract 
(Suna et al., 2014), Vitis vinifera fruit extract (Gnanajobitha et 
al., 2013), Salvadora persica stem extract (Tahir et al., 2015), 
Vasaka (Justicia adhatoda L.) leaf extract (Bose and Chatterjee, 
2015), and beetroot extract (Bindhu and Umadevi, 2015). Gold 
nanoparticles have been synthesized by Coleus amboinicus, 
Dillenia indica fruit extract, tuber extract of Dioscorea bulbifera, 
and leaf extract of Euphorbia hirta, Zingiber officinale, Mentha 
piperita. Zinc oxide nanoparticles have been synthesized 
by various plant parts like leaf, stem, root, fruit, and seed. 
Bio-reduction involves reducing metal ions or metal oxides 
to 0-valence metal NPs. Other fabulous plant species also 
reported successfully such as Calatropis gigantean, Plectranthus 
amboinicus, Agathosma betulina, Vitex negundo, Nephelium 
lappaceum, Azadirachta indica, Moringa oleifera, Plectranthus 
amboinicus, and Anisochilus carnosus (Agarwal et al., 2017; Kumar 
et al., 2017; Nadeem et al., 2017).

Fig. 6: Nanoparticle synthesis using plant extractFig. 5: Nanoparticle synthesis using microbes
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re m e d I At I o n o f dye s by gr e e n syn t h e s I z e d 
nA n o pA r t I c l e s

According to Barizãoa et al. (2020), tartrazine and Bordeaux 
red dye can be removed by iron oxide nanoparticles using two 
agro-industry residues: Cucurbita moschata leaves and Beta 
vulgaris stalks. The synthesized nanoparticles with an estimated 
diameter of 2 and 20 nm, were observed by diffraction peaks 
in X-ray Diffraction (XRD). In the adsorption process for dye, 
equilibrium was obtained after 1,200 minutes for tartrazine and 
240 minutes for Bordeaux red when Cucurbita moschata leaves 
were applied in the dye solution. When Beta vulgaris stalks were 
used, equilibrium reached after 180 minutes for tartrazine and 
120 minutes for Bordeaux red. Kouhbanani et al. (2019) also 
reported a successful generation of iron oxide nanoparticles. 
These nanoparticles were synthesized using aqueous leaf 
extract of Teucrium polium in size range of 5.68 to 30.29 nm, 
which was characterized using particle size analysis (PSA). The 
green synthesized iron oxide nanoparticles IONPs were able to 
decolorize methyl orange dye with 73.6% efficiency in a 6-hour 
reaction. The maximum rate of methyl orange degradation 
occurred with IONPs catalyzed H2O2 after 6-hour with 73.6% 
efficiency. Decolorization of methyl dye became possible 
due to the combination of IONPs and H2O2. This combination 
caused the release of free hydroxyl radical (OH·) that attacked 
and cleaved the azo bond (-N=N-) found in the methyl orange, 
which led to the decolorization of dye solution (Kouhbanani et 
al., 2019). Another study of dye decolorization using iron oxide 
nanoparticles (Fe2O3NPs) was reported by Bibi et al., in which 
the nanoparticles were successfully fabricated via green route 
using pomegranate (Punica granatum) seeds extract, which 
were confirmed by UV-Vis., XRD, EDX, SEM, and AFM techniques. 
The shape (semi-spherical) and size (25–55 nm) of produced 
nanoparticles was confirmed with the aid of scanning electron 
microscopy (SEM). Fe2O3 NPs showed excellent photocatalytic 
activity against reactive blue under UV light irradiation, and 
maximum degradation of 95.08% was achieved with 56 minutes 
of reaction time. It was observed that the absorption peak 
of dye decreased rapidly as a function of UV irradiation time, 
which was due to the breakdown of the chromophore group in 
the dye. The dye was degraded up to 95.08% in 56 minutes of 
reaction time (Bibia et al., 2019). According to Ismail et al. (2019), 
Duranta erecta, flowering shrub’s fruit extract, was used in the 
synthesis of copper nanoparticles. In the existence of NaBH4, 
these nanoparticles played a great role in discoloration of methyl 
orange and congo red dye. The reduction of both dyes followed 
the pseudo-first-order reaction. In the presence of NaBH4 and 
CuNPs, the reduction of methyl orange achieved 96% in 4 
minutes and 90.35% reduction of congo red in 5 minutes. This 
CuNPs reusability was checked four times for methyl orange. 
For the first time, the degradation rate achieved was 96% in 4 
minutes, then for the second time, it took 6 minutes for the 95% 
degradation, and 10 and 15 minutes for 95% in the third and 
fourth time (Ismail et al., 2019).

Fatimah et al. (2020) fabricated iron oxide (Fe3O4 and Fe2O3) 
nanoparticle (10–80 nm) by using Parkia speciosa Hassk pod 
extract. These nanoparticles contained magnetic property as 
well as showed a great reduction rate (98%) of bromophenol 

blue dye under both UV and visible light exposure. The 
photocatalytic reduction rate of bromophenol blue was 
affected by the formation of hydroxyl radical, which formed 
after the addition of H2O2. The addition of H2O2 significantly 
accelerated the degradation rate, and faster degradation 
occurred under UV light as compared with that under visible 
light. In the research work of Kolya et al. (2015), silver (Ag) 
nanoparticles (11–15 nm) were produced by the use of leaf 
extract of Amaranthus gangeticus Linn through the solution of 
silver nitrate (AgNO3). The produced silver (Ag) nanoparticles 
exhibited great degradation towards congo red dye. Silver 
nanoparticles were also synthesized using an extract of Clitoria 
ternatea pods with an average size of 62.51 nm. Methylene 
blue dye degraded in the presence of NaBH4 with the aid of 
green synthesized silver nanoparticles. The decolorization of 
dye occurred from blue color to completely vanish within 18 
minutes. For the degradation process, silver nanoparticles help 
in transferring the electron from BH4

- to methylene blue dye 
(Varadavenkatesan et al., 2019).

As per Wang et al. (2018), Klebsiella oxytoca GS-4-08 is an 
anaerobic bacteria that was used in the generation of palladium 
nanoparticles (5–20 nm) in the existence of glucose. These 
bio-Pd nanoparticles were efficient for the removal of azo dyes 
(methyl orange, acid blue 113, reactive black 5, and acid red 1). 
The reduction efficiency was about 96.54 ± 0.23% in 24 hours. 
The enhancement of the reduction rate of azo dyes obtained 
by the use of anthraquinone-2-disulfonate (AQS). The reduction 
rate in the presence of AQS achieved at 68.55 ± 0.21% only in 2 
hours, while in the absence of AQS, the reduction rate was only 
58.35 ± 0.45%. According to Kora and Rastogi (2016), Palladium 
nanoparticles are also produced from palladium chloride (PdCl2) 
via gum olibanum (Boswellia serrata) with an average size of 
about 6.6 nm. By the use of these nanoparticles, the reduction 
in the concentration of the synthetic dyes such as rhodamine B, 
coomassie brilliant blue G-250, and methylene blue with NaBH4 
was observed. The whole reduction process completed within 2 
minutes, with a color change from yellow to colorless.

According to Ismail et al. (2018), silver nanoparticles were 
synthesized by taro (Colocasi aesculenta) plant rhizome powder 
with a mean size of about 68 ± 12 nm. These nanoparticles 
showed high degradation efficiency towards the organic azo 
dyes such as methyl orange (MO), congo red (CR), methyl red 
(MR), and rhodamine B (RhB) by NaBH4. 100% degradation of 
methyl orange was achieved in the presence of NaBH4 with 
green synthesized silver nanoparticles only in 7 minutes. The 
discoloration of congo red (96.9%)was achieved in 12 minutes by 
NaBH4 in the presence of active catalysts silver (Ag) nanoparticles. 
Sodium borohydride in the presence of catalyst reduced congo 
red molecule at the azo sites (-N=N-) by producing hydrazine 
derivative compounds. Similarly, 96.29% of methyl red reduction 
took 14 minutes, and 97.78% reduction of rhodamine B took just 
6 minutes. The prepared silver nanoparticles also showed a great 
reduction of the mixtures of dyes. Complete reduction obtained 
of the mixture of methyl orange and methyl red only in 9 and 10 
minutes for the mixture of methyl orange, methyl red, and congo 
red. The general hypothesis behind nanoparticle fabrication and 
dye removal is shown in Fig. 7. Some other literature works have 
been shown in Table 1.
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Table 1: Green synthesized nanoparticles for dye remediation

S. 
No. Plant extract/ microorganism

Nanoparticle 
(NPs)

Characterization 
techniques

Size/ 
diameter of 
NPs (nm) Targeted dye References

1 Cucurbita moschata leaves Iron oxide UV-VIS 2–20 Tartrazine Barizãoa et al. (2020)
Beta vulgaris stalks FTIR Bordeaux red

TEM
XRD

2 Leaf extract of Teucrium polium Iron oxide TEM 5.68–30.29 Methyl 
orange

Kouhbanani et al. 
(2019)

PSA
XRD
FTIR
VSM
TGA

3 Punica granatum seeds extract Iron oxide UV-VIS 25–55 Reactive blue Bibia et al. (2019)
XRD
EDX
SEM
AFM

4 Fruit extract of Duranta erecta Copper UV-VIS 70 Methyl 
orange

Ismail et al. (2019)

XRD Congo red
EDX

Fig. 7: Hypothesis behind synthesis of nanoparticle and dye remediation

Cont...
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FTIR
SEM

5 Parkia speciosa Hassk pod 
extract

Iron XRD 10–80 Bromophenol 
blue

Fatimah et al. (2020)

SEM
TEM

6 Leaf extract of Amarranthus 
gangeticus

Silver HR-TEM 11–15 Congo red Kolya et al. (2015)

SAED
UV-VIS
FTIR

7 Extract of Clitoria ternatea pods Silver UV-VIS 62.51 Methylene 
blue

Varadavenkatesan et al. 
(2019)

SEM
XRD
FTIR
EDX

8 Klebsiella oxytoca GS-4-08 Palladium TEM 5.20 Azo dyes Wang et al. (2018)
XRD

9 Boswellia serrata Palladium UV-VIS 6.6 ± 1.5 Coomassie 
brilliant blue 
G-250

Kora and Rastogi (2016)

DLS Rhodamine B
TEM Methylene 

blue
XRD
FTIR

10 Taro (Colocasia esculenta) plant 
rhizome powder

Silver SEM 68 ± 12 Methyl 
orange

Ismail et al. (2018)

EDX Congo red
XPS Methyl red
XRD Rhodamine B

11 Camellia sinensis tea extract Iron XRF 20–100 Methylene 
blue

Carvalho and Carvalho 
(2017)

TGA Methyl 
orange

TEM Bromothymol 
blue

12 Palm dates fruit Silver-iron 
bimetallic 
NPs

UV-VIS 5–40 Bromothymol 
blue

Al-Asfar et al. (2018)

TEM
EDX

13 Extracts of green tea leaves Iron TEM 40–60 Methylene 
blue

Shahwana et al. (2011)

SEM Methyl 
orange

EDX
XRD
FTIR

14 extract of Cupressus 
sempervirens

Iron TEM 19 Methyl 
orange

Ebrahiminezhad et al. 
(2017)

FTIR
UV-VIS
XRD

Cont...

Cont...
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15 Green tea Iron TEM Remazol 
brilliant Blue 
R

Truskewycza et al. 
(2016)

SEM Direct red 80
EDX
FTIR
Zeta potential

16 Green tea Iron UV-VIS 50–60 Malachite 
green

Abbassi et al. (2013)

17 Leaf extract of Azadirachta 
indica

Cerium 
dioxide

XPS 10–15 Rhodamine B Sharma et al. (2017)

DSC
TGA
UV-VIS
XRD
SEM
TEM

18 Angelica gigas ribbed stem 
extracts

Silver and 
gold

FTIR 20–50 Eosin Y Chokkalingam et al. 
(2019)

EDX Malachite 
green

XRD
FTIR
UV-VIS
PSA

20 Leaf extract of Camellia sinensis Zinc Oxide UV-VIS 60 Malachite 
green

Batool et al. (2018)

FTIR
XRD
SEM

21 Mulberry leaves Iron DLS 47.70 Methylene 
blue

Lim et al. (2018)

SEM Methyl 
orange

FTIR
UV-VIS
Zetasizer

22 Datura leaf extract Iron SEM 326–327 Solo chromo 
black (SCB)

Raju et al. (2017)

UV-VIS
23 Zanthoxylum armatum leaves Silver UV-VIS 15–50 Safranine O Jyoti and Singh (2016)

FTIR Methyl red
SEM Methyl 

orange
TEM Methylene 

blue
SAED
XRD
EDX

24 Gymnema sylvestre extract Silver UV-VIS 95.2 Methylene 
blue

Kumar et al. (2019)

FTIR
XRD

Cont...

Cont...
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TEM
SEM

25 Brassica oleracea L. var. italica Zinc oxide XRD 14–17 Methylene 
blue

Osuntokun et al. (2019)

EDX Phenol red
TEM
SEM
UV-VIS
FTIR
Photoluminescence

26 Ampicillin Silver EDX 14.1 Methylene 
green

Junejo et al. (2014)

TEM
SEM
UV-VIS
FTIR

27 Catharanthus roseus leaf 
extract

Palladium TEM 38 Phenol red Kalaiselvi et al. (2015)

SEM
UV-VIS
FTIR
XRD

30 Kashayam, Guggulutiktha, an 
ayurvedic medicine

Silver and 
gold

UV-VIS 15–50 Methylene 
blue

Suvith and Philip (2014)

FTIR
XRD
TEM

31 Arabic gum Zinc oxide UV-VIS 10 Direct blue 
129

Fardood et al. (2017)

FTIR
XRD
TEM

32 Persia americana seed Tin oxide UV-VIS 4 Phenol red Elango et al. (2015)
FTIR
XRD
SEM
EDX

33 Helicteres isora extracts Silver UV-VIS 25–45 Methyl violet Bhakya et al. (2015)
PSA Safranin
FTIR Eosin 

methylene 
blue

TEM Methyl 
orange

SEM
34 Lemon juice Zinc oxide SEM 21.5 Methyl 

orange
Davar et al. (2015)

EDX Methylene 
blue

XRD Methyl red
  TG-DTA Reactive blue 

21
  FTIR

Cont...

Cont...
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  UV-VIS
  Photoluminescence

35 Trigonella foenum-graecum 
seeds

Silver UV-VIS 17 Methyl 
orange

Vidhu and Philip (2014)

XRD Methylene 
blue

HRTEM Eosin Y
FTIR

36 Morinda morindoides leaf 
extract

Cu/Fe3O4 UV-VIS 16–21 Congo red Nasrollahzadeha et al. 
(2016)

XRD Rhodamine B
FTIR
TGA
DTA
TEM
SEM

37 Eucalyptus tereticornis Iron−
polyphenol 
NPs

SEM 50–80 Acid black 
194

Wang et al. (2014)

Melaleuca nesophila EDX
Rosemarinus officinalis XRD

FTIR
38 Carica papaya leaf extracts Zinc oxide SEM 50 Methylene 

blue
Rathnasamy et al. 
(2017)

TEM
XRD
UV-VIS

co n c lu s I o n

In the fabrication of nanoparticles, naturally occurring 
substances are the aptest candidate for playing the role of 
reducing and capping agent. Green synthesis of nanoparticles 
has several advantages such as cost-effective, biocompatible, 
rapid synthesis, high stability, and easily available. One major 
advantage of green synthesized nanoparticles is that they 
are environment friendly. The remediation of environmental 
pollutants using green synthesized nanoparticles has witnessed 
as an emerging trend in the last decade. The effluent of the 
dyeing industry poses a threat to the environment because 
of long term disposal. Conventional and advanced treatment 
techniques for the remediation of dyes failed because these 
were not degrading the dye completely, effectively, and 
economically. This review specially focused on the remediation 
of dyes by using different sizes and shape nanoparticles, 
which were synthesized by green nanotechnology because 
of the protection of the environment. Therefore, for our safe 
environment, green nanotechnology needs to be explored by 
further future studies in various fields such as water purification, 
air purification, agriculture, food science, etc.
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