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Abstract 

With the dramatically increasing use of nanotechnology-enabled consumer products, engineered nanomaterials 
(ENMs). ENMs are inevitably discharged into environment, posing unknown risks to ecosystem structure and 
function. Plants play important roles in soil and water resources in the environment. Although these ENMs 
have been widely used in medicine, agriculture, and consumer products for great economic benefit, their unique 
properties, may cause adverse effects on plants. Thus, toxicity and disposition of ENMs in terrestrial plants, 
especially agricultural crops, should be fully characterized. This mini-review summarizes the current literature 
on: (1) the distribution and biotransformation of ENMs; (2) ENMs induced phytotoxicity at physiological and 
molecular levels; (3) nutrient displacement or enhancement in ENMs treated plants; (4) trophic transfer of 
ENMs in terrestrial food chains. 

Key words: Engineered nanomaterials (ENMs), Biotransformation, Phytotoxicity, Nanotoxicity, Nutrient 
displacement. 
 

1. Introduction 

Engineered nanomaterials (ENMs) have many 
advantages and bring a huge benefit to the fields of 
biomedical, agriculture and renewable energy (Nel 
et al., 2006; Mauter and Elimelech, 2008; Barreto et 
al., 2011). However, due to unique properties at the 
nanoscale (high surface area and greater reactivity) 
(Somasundaran et al., 2010), engineered 
nanomaterials (ENMs), including both carbon-based 
and metal-based nanomaterials, can interact 
uniquely with biota (microorganism, plants, and 
animals) in the environment (Ma et al., 2013; 
Srivastava et al., 2015; Van Aken, 2015). An 
increasing number of studies have demonstrated that 
ENMs can cause oxidative stress in exposed 
organisms by inducing excessive amounts of 
reactive oxygen species (ROS), production (Panda 
et al., 2011; Dimkpa et al., 2012a; Zhao et al. 
2012a). A thorough characterization of ENMs 
distribution and biotransformation in plants may 
reveal important information from the aspect of 
nanotoxicity (Zhang et al., 2011a; Servin et al., 
2012). Plants are a critical component in ecosystem 
structure and function, and form the basis of 
terrestrial food chains. Thus, evaluating the trophic 
transfer of ENMs can help further understand and 
evaluate the overall risk posed by these unique 
materials in the environment. This review seeks to 
address the impacts of ENMs on plants with regard 
to: (1) uptake and biotransformation of ENMs in 
planta; (2) phytotoxicity to plants; (3) nutrient 
displacement or enhancement; and (4) trophic 
transfer of ENMs in terrestrial food chains. 

2. Impacts of ENMs on Plants 

In plant-ENM interaction studies, root and foliar 
pathways are the two modes of ENMs exposure to 

plants. Since ENMs are used as additives in 
agrichemical formulations, both approaches are 
appropriate and simulate realistic conditions by 
ENMs enter the environment (Lee et al., 2012; 
Hong et al., 2014; Deepa et al., 2015). The literature 
shows that ENMs exposure to plants can cause both 
positive and negatives impacts; as such, we will 
review ENMs interactions in three sections: (1) 
ENMs uptake and biotransformation; (2) 
phytotoxicity of ENMs to plants; (3) nutrient 
displacement or enhancement in ENMs treated 
plants. 

2.1. ENMs uptake and biotransformation 

Many environmental factors will influence the 
aggregation, ion-release, and surface properties of 
ENMs, including pH, ionic strength, dissolved 
organic matter (DOM) presence and type, and biotic 
interactions (Chang et al., 2012). Although it can be 
important to characterize ENMs prior to exposure 
experiments, it is important to recognize that system 
complexities may dramatically and dynamically 
alter the materials from their “native” state. Post-
exposure, there are multiple approaches used to 
assess ENM fate. The most commonly used 
methods to measure metal content in plant tissues 
are inductively coupled plasma mass spectrometry 
(ICP-MS) and inductively coupled plasma optical 
emission spectroscopy (ICP-OES) (Stampoulis et 
al., 2009; De La Torre-Roche et al., 2012; Ma et al., 
2013; Majumdar et al., 2014). Notably, neither of  
these methods will provide information on particle 
size; the techniques simply provide total metal 
contents. However, some ICP-MS systems can be 
run in single particle mode and hyphenated 
approaches such as Field Flow Fractionation (FFF) 
can be used to generate particle size specific data.  
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In reviewing the literature, it immediately becomes 
apparent that comparing metal accumulation across 
studies is confounded by differences in experimental 
conditions, exposure pathways and periods, lack of 
detail and artifacts of design (Petersen et al., 2014). 
Some interesting trends in ENMs uptake by plants 
are evident when were using bioaccumulation factor 
(BAF) to normalize element content data in shoot 
and root tissues separately (Ma et al., 2015b). 

Substrates used for plant growth are a primary 
factor that determines ENMs uptake. As expected, 
significantly high levels of Ag nanoparticles (NPs) 
were noted in mung bean and sorghum grown in 
liquid medium are evident as compared to both 
plants grown in soil (Lee et al., 2012). Further, soil 
type can also determine NPs uptake in plants. For 
example, translocation factors (TFs) in CeO2 NPs 
treated corn grown on organic matter enriched soil 
was found to be significantly lower than in 
unenriched soil (Zhao et al., 2012b). Additionally, 
NPs size is another factor that can dramatically 
influence NPs accumulation in terrestrial plants (Yin 
et al., 2011; Zhang et al., 2011b). NPs can penetrate 
the cell wall, of which pore size is usually in a range 
of 5-10 nm, although a large portion of NPs might 
aggregate due to pH, ionic strength, and dissolved 
organic matter in environment as mentioned above. 
Other than determination of total metal uptake using 
ICP-MS, synchrotron-based micro X-ray 
fluorescence (μ-SXRF) microscopy can be applied 
to investigate the oxidation of metal-based NPs in 
plant tissues (Servin et al., 2012; Zhang et al., 2012; 
Hernandez-Viezcas et al., 2013), which can help us 
further understand the role of biotransformation in 
the toxicity and biological fate of these materials  
in planta. Fig. 1 shows a schematic diagram of how 
ENMs biotransformation happens in plants. A 
robust literature has begun to develop on the uptake 
and transformation of rare earth element (REEs) 
oxide NPs in plants. For example, CeO2 NPs in 
exposed cucumber were present as partially 
transformed to phosphate precipitates (Zhang et al., 
2012). Biotransformation of other metal-based NPs 
such as ZnO, CuO and Ag were also reported in 
soybean, Elsholtzia splendens, and lettuce, 
respectively (López-Moreno et al., 2010; Larue et 
al., 2014; Shi et al., 2014). Both CuO and Ag NPs 
were partially complexed by binding with –SH 
containing compounds, including key plant defense 
molecules such as cysteine and glutathione (GSH) 
(Larue et al., 2014; Shi et al., 2014). 

2.2. Phytotoxicity of ENMs to terrestrial plants  

Numerous of studies have demonstrated that both 
carbon- and metal-based ENMs can cause oxidative 
stresses by inducing excessive amounts of ROS 
production, which subsequently results in growth 
inhibition, as well as damage to cell membrane 
integrity, chlorophyll function and to DNA (Panda 
et al., 2011; Atha et al., 2012; Faisal et al., 2013; 
Mirzajani et al., 2013). Most of metal-based NPs, 

including Ag, CuO, ZnO, and CeO2 can decrease 
chlorophyll content and function, which 
subsequently compromises plant health and 
agricultural yield (Dimkpa et al., 2012a; Ma et al., 
2013; Mirzajani et al., 2013; Mukherjee et al., 
2014). Further evidence from a transcriptomic study 
with Ag NPs treated Arabidopsis thaliana 
demonstrated that transcription level of 
protochlorophyllide reductases were significantly 
down-regulated upon exposure and the authors 
suggest this as a mechanism for decreased 
chlorophyll content (Kaveh et al., 2013). Increases 
in lipid peroxidation is a characteristic indicator of 
decreased cell membrane integrity, and is directly 
linked to excessive amounts of ROS generation. In a 
range of 0-1.0 mg L

-1
 concentrations of Ag NPs 

treated rice root, malondialdehyde (MDA) content 
(an indicator for lipid peroxidation) increased in a 
dose-dependent fashion (Nair and Chung, 2014). 
Others demonstrated lipid peroxidation and loss of 
membrane integrity that resulted in ion leakage upon 
CeO2 NPs exposure to rice and corn (Zhao et al., 
2012a; Rico et al., 2013a). 

 

Fig. 1: Overview of ENMs biotransformation in plants, 
phytotoxicity and trophic transfer of ENMs within in 
terrestrial food chain 

In response to ENMs exposure, plant defense 
mechanisms involved in ROS scavenging and metal 
detoxification can be up-regulated to counteract 
potential phytotoxicity. ROS scavenging antioxidant 
enzymes such as superoxide dismutase (SOD), 
catalase (CAT), and ascorbate peroxidase (APX) 
can convert ROS into O2 and H2O. However, in 
reviewing the literature, it is clear that antioxidant 
enzyme activity in ENMs treated plants also varies 
with plant species, exposure conditions, dose, and 
NPs type. For example, exposure of 500 mg L

-1
 

CeO2 NPs to the rice cultivar “Cheniere” led to 
significant increases of APX activity in root tissues 
but another rice cultivar (“Neptune”) exhibited 
increased CAT activity at CeO2 NPs exposures as 
low as 62.5 mg L-1

 (Rico et al., 2013a,b). 

Similarly, the up-regulation of transcription 
levels of APX in tobacco upon Al2O3 NPs exposure 
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also suggests that inherent defense systems in plants 
can scavenge ENM generated ROS through the 
manipulation of gene expression of antioxidant 
enzymes (Burklew et al., 2012). Similarly, the 
relative expression of genes involved in SOD, 
peroxidase (POD), and glutathione S-transferase 
(GST) were highly induced in Arabidopsis when 
treated with 5 mg L-1

 Ag NPs (Kaveh et al., 2013). 
The important role of the GSH metabolic pathway 
has been well-documented in NPs exposed plants. In 
NiO NPs treated tomato, GSH levels increased in a 
dose-dependent fashion. Further evidence has 
demonstrated that GSH is involved in both metal 
detoxification and ROS scavenging. Ma et al. 
(2015a) investigated enhanced level of GSH in γ-
glutamylcysteine synthase (γ-ECS) Crambe could 
protect plants from both Ag NPs and Ag

+
 ions 

toxicity and attained greater biomass. Another 
evidence for scavenging ROS induced by CeO2 NPs 
in rice has been reported that ascorbate-glutathione 
cycle played an important role to break down 
excessive amounts of ROS in rice (Rico et al., 
2013b). Induced levels of oxidized GSH (GSSG) in 
Ag NPs treated wheat suggested an indirect link 
with reduced GSH, which might be depleted during 
the process of ROS scavenging and metal 
detoxification (Dimkpa et al., 2012b). At molecular 
level, transcription level of genes involved in sulfur 
assimilation and GSH biosynthesis in Arabidopsis 
were highly induced upon exposures to CeO2 and 
indium oxide nanoparticles (In2O3 NPs) (Ma et al., 
2013). Approximate 5-folds changes of gene 
encoding glutathione synthase (GS) were found in 
50 mg L-1

 In2O3 NPs treated Arabidopsis, while only 
about 2.5-folds changes were evident in 500 mg L-1

 
CeO2 NPs treatment. 

2.3. Nutrient displacement or enhancement in 
ENMs treated plants and use of ENMS as growth 
stimulants 

The presence of ENMs could interfere with 
nutrient acquisition and transport, subsequently 
causing nutritional imbalance and compromised 
plant health. For example, Ag NPs exposure to wild 
type Crambe abyssinica caused significant decrease 
in Fe accumulation in the plant tissues (Ma et al., 
2015a). 1000 mg kg

-1 
CeO2 NPs reduced N2 fixation 

in soybean, possibly by inhibiting the growth of N2 
fixing bacteria inside of nodules (Priester et al., 
2012); in addition, the bioavailability of phosphorus 
(P) was decreased in Hoagland’s solution, probably 
because P could precipitate with Ce

n+ 
released 

 
from 

CeO2 NPs (Cornelis et al., 2011; Schwabe et al., 
2013). Indirect evidence of cation transporter and 
aquaporin down-regulation in the presence of 25 mg 
L

-1
 Au NPs suggests that nutrient deficiency may 

result from dysfunction of ion-selective channels 
upon NPs exposure (Taylor et al., 2014). More 
studies are needed to draw conclusions on the 
interactions of ENMs and nutrient ions displacement 
in plants and the underlying biochemical and 
molecular mechanisms involved. 

In spite of the observed negative impacts of 
certain ENMs on nutrient levels in plants, other 
ENMs have potential as nano-enabled fertilizers 
and/or growth stimulants for the purposes of 
enhanced crop performance. Numerous examples of 
positive effects of ENMs on plant germination, 
biomass, and crop yield have been reported (Seabra 
et al., 2014; Liu and Lal, 2015; Servin et al., 2015). 
Not only could amendments of nano-scale nutrient 
elements promote plant growth, but also, due to 
their antimicrobial property, these NPs could inhibit 
activities of both bacterial and fungal pathogens, 
slowing disease course and increasing yield. For 
example, 500 mg L

-1
 Mg NPs could significantly 

increase seed weight and inhibit bacterial activity 
(Huang et al., 2005; Delfani et al., 2014). Similarly, 
low dose exposure of micronutrient Cu and Fe NPs 
greatly elevated the rate of photosynthesis in 
waterweed and soybean as compared to untreated 
controls (Nekrasova et al., 2011; Ghafariyan et al., 
2013). In the presence of foliar application of Fe 
NPs, the levels of both macro- and micro-nutrients 
in Spathyphyllum were significantly increased 
(Rasht, 2013). Carbon-based nanomaterials (CNMs) 
have been shown to exert similar positive impacts 
on plant growth as well. One common finding 
across several studies was that CNMs could 
stimulate water uptake by activating aquaporins; this 
directly resulted in faster seed germination and 
increased plant biomass (Khodakovskaya et al., 
2009, 2013). Although this literature seems in 
conflict with the observed phytotoxicity mentioned 
previously, the data suggests that the conditions of 
dose and exposure may ultimately define the 
balance between toxicity, no effect or growth/yield 
enhancement. Significant future study should be 
directed at this area so as to provide a scientifically 
sound and mechanistic basis for the use of ENMs in 
agriculture. 

3. Environmental Implication of ENMs 

3.1. ENMs in edible portion of plants 

With the dramatically increasing use of ENMs, 
concerns over the lack of understanding of the risks 
posed to food safety have been raised. Evidence for 
the presence of CeO2 NPs in the edible portion of 
soybean was reported using synchrotron based  
X-ray fluorescence micrscopy (Priester et al., 2012); 
although the implications of this finding are 
unknown, caution is clearly warranted. Long-term 
experiments with CeO2 and ZnO NPs treated corn 
demonstrated that both NPs could reduce crop yield 
by 38% and 49%, respectively, and but perhaps 
more importantly, nutritional quality may have been 
compromised from altered nutrient allocation in the 
kernels (Zhao et al., 2015). Thorough investigations 
on long-term impacts of ENMs on both food quality 
and safety are just beginning. It is important that 
such studies be conducted under conditions of 
environmental relevance, including long-term, 
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multi-generation exposure to realistic exposure 
concentrations with endpoints that provide 
mechanistic information on plant response. Only 
then will an accurate and meaningful evaluation of 
risk be possible. 

3.2. Trophic transfer of ENMs along terrestrial 
food chain 

Along with the evidence of the presence of 
ENMs in the edible tissues of plants, a small but 
increasing number of studies on trophic transfer of 
ENMs within terrestrial food chains, as illustrated in 
Fig. 1, have been published (Gardea-Torresdey et 
al., 2014). Several studies with Au NPs produced 
mixed results, with trophic transfer and 
biomagnification occurring in some scenarios but 
not others (Judy et al., 2010, 2012; Unrine et al., 
2012). For example, Hawthorne et al. (2014) 
monitored the transfer of Ce from CeO2 NP 
contaminated soil to zucchini, as well as to crickets 
that consumed the zucchini and spiders that 
consumed the crickets. The authors observed that 
CeO2 transferred in a particle sizes specific fashion. 
Interestingly, about 10 times more Ce was found in 
the cricket feces than that present in the insect 
tissues; the implications of this finding are not 
known but possible ENMs detoxification/excretion 
mechanisms would be of great interest (Hawthorne 
et al., 2014; Koo et al., 2014). As noted above, the 
published work here is limited and there are 
currently no related study on how the trophic 
transfer of ENMs could impact human health along 
with food chain. There is a robust literature on 
human cell ENM interactions, with exposure known 
to induce pulmonary disease, kidney cell apoptosis, 
and dermal toxicity (Shvedova et al., 2003; Cui et 
al., 2005; Hirano et al., 2010). Thus, investigations 
into the impacts of ENMs through terrestrial food 
chains and their potential risks to humans and other 
receptors are greatly needed.  

4. Conclusion 

Concerns over potential negative impacts on the 
environment from the dramatically increasing 
demands for ENMs usage have been drawn more 
attention. Although ENMs can and have brought a 
huge benefit for human health and the economy, 
potential negative impacts caused by ENMs release 
into the environment should not be neglected. 
Current studies have illustrated that ENMs exposure 
can have both negative (e.g. oxidative stresses 
induced by ENMs) and positive (e.g. nano fertilizer 
in a relative low exposure range) consequences on 
agricultural crops. Understanding the fine and likely 
dynamic boundary between acceptable and 
unacceptable consequences of ENMs use, 
particularly in agriculture, poses a significant 
challenge. Clearly, a mechanistic understanding of 
key processes and interactions will be needed. In 
term of ENMs biotransformation in plants, 
techniques such as scanning/transmission electron 

microscopy, single particle ICP-MS, FFF-ICP-MS, 
and synchrotron-based techniques will be critical to 
this effect. For example, μ-SXRF is a powerful 
technique to analyze metal speciation in plant 
tissues, providing critical understanding on where 
biotransformation happens and how the transformed 
ENMs interact with plants at cellular and sub-
cellular level. Such approaches will ultimately 
generate the necessary knowledge base to inform an 
accurate and meaningful assess of risk from ENMs 
exposure and use.  
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