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Ab s t r ac t
Mycoremediation is a new wave of cutting-edge technology in this era that incorporates fungi in nursing environment damaged by 
toxins. Instigating fungi to such contaminated places leads the way for the natural cleaning process. Waste treatment plants running 
on incinerators, exercising physical and chemical methods, are injurious to the health of organisms and the environment. They lead to 
life-threatening diseases and negative soil pollution. Eco-friendly and secure techniques are to be employed for their management. 
Microfungi, as well as macrofungi, help in this procedure. They degrade environmental wastes as heavy metals, aromatic hydrocarbons, 
polychlorinated compounds, organic compounds by their extracellular enzymes without harming any natural component of soil. 
Demand and the need for reaching net-zero emission remain farsighted deed in the current scenario of rapid industrialization. Therefore, 
merging of the fungi with new techniques can speed up other processes of sustainable recovery of hazardous pollutants that may 
help in fighting against deleterious pollution levels. Their enzymes assert a great role and help in xenobiotic degradation rendering 
land and water clean and safe. Nevertheless, they do not have any special growth demand. White rot fungi and many mushrooms can 
grow on a wide range of substrates. The most common being sawdust, agricultural waste, and straw. Their biosorption efficiency helps 
to reclaim contaminated land. Ligninolytic enzymes uphold the mycoremediation process. In this review, we have encapsulated the 
mycoremediation of toxic substances by various genera and species of fungi along with the mechanisms involved. The aim is to precisely 
draw attention to the magnificently inherited traits of fungi that make them apt for the remediation process.
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In t r o d u c t i o n

With the advent of the 21st century, there has been a raging 
soar for undertaking steps to balance climate change 

ranging from mitigating cumulative carbon dioxide emissions 
to meeting safe waste disposition and management works. An 
inadequate chemical and physical procedure to meet these 
demands in a holistic approach has laid us back to readdress a 
biological method for the degradation process. Solid or liquid 
waste discarded on open land areas or water bodies remains 
for years without any treatment hindering human and livestock 
activities. This leads to a reduction in landmass, a major challenge 
in developing cities. The arrival of such wastes into the food 
chain leads to bioaccumulation together with biomagnification, 
jeopardizing the whole biotic community. Furthermore, loosing 
of unimpeded chemicals from industries and raw products as 
heavy metals, toxic chemical salts, xenobiotics, dyes, petroleum 
products, pesticides, and e-waste has led us to embrace a 
thoroughgoing process that works by replenishing compounds 
which can be advantageous to the ecosystem.

Currently, preferable methods are bioremediation, 
bioaugmentation, and rhizoremediation that not only involve 
living organisms to curb environmental pollution but also 
have an efficiency in the decontaminating process are gaining 
popularity. Micro-organisms involved here help to transform the 
complex hydrocarbons. To reach the control goals of reducing 
carbon dioxide pollution, carbon accumulation through 
vegetable biomass can be an effective remedy, and fungi 
may serve a key part. The role of fungi over toxic remediation 
is seeking attention nowadays. They are the hidden warriors 
covering acres of forest land and remaining much invisible 
hence helping in regulating atmospheric carbon dioxide levels.

Mycoremediation demands the utilization of fungal biomass 
to further fragment complex environmental and hazardous 
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industrial pollutants. Fungal mycelium facilitates carbon 
sequestration, biodiversity preservation; their hyphae bind 
well with the soil, thus allowing the soil to retain water through 
water percolation. The Meta-proteomics method incorporates 
evaluating complete protein aggregates in any habitat at a 
given rate. It scans absolute protein content among microbial 
communities dwelling in certain environments. (Hart et al., 2018). 
Estimation of 16S rRNA genes in contaminated habitats provided 
details on microorganisms colonizing natural surroundings. The 
behaviour of mRNA genes in mycoremediation permits flexibility 
about the metabolic entities of microorganisms in polluted 
areas (Lovely, 2003). Such genomic tools are gaining popularity 
nowadays in evaluating genotypes of microbes (Han et al., 2020).

Bi o r e m e d ia t i o n u s i n g Fu n g i

Bioremediation is a process that engages living organisms, 
mainly bacteria, and microbes to decontaminate polluted 
communities. Anthropogenic practices have had an impact 
on the well-being of the ecosystem in the form of negative 
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environmental repercussions as pollution. Mycoremediation, 
a term coined by Stamets (2005), enumerates the process of 
utilizing fungi to attain a lesser polluted environment. On 
account of the capabilities inherited by fungi to degrade 
cellulose and lignin, breakdown of toxic chemicals, they 
are named as natural decomposers assisting soil formation. 
Mycoremediation can happen at three primary places in a 
fungal cell that is on the surface, extracellular environment, or 
intracellular environment. They are dominating biomass of soil 
but not much exploited for bioremediation (Singh et al., 2015). 
Filamentous fungus species also have their bit part in degrading 
waste owing to their mycelial ability to acclimatize to extreme 
climate conditions. Filamentous fungi producing mycotoxins 
also have a role in solid waste management. Recent studies 
are being conducted to elucidate the role of filamentous fungi 
for the bioremediation process that can be bioseparation of 
suspended solids (Barrech et al., 2018).

Besides distinct pharmaceutical and nutraceutical qualities, 
fungi can also absorb carbon and help in cleaning polluted soils. 
Stamets (2005) discussed an experiment that demonstrated 
Pleurotus ostreatus to be effective in remediating oil spills. 
Mycelium spores were spread on a given area, and growth 
of oyster mushroom was noted down that subsequently 
became a spot of insects and bird attraction, being primary 
facets of ecosystem foundation. Mycoremediation is a site-
specific phenomenon. It involves cleaning hazardous waste 
through fungi by harnessing their inherent ability of enzymatic 
breakdown (Table 1). Plastics are non-biodegradable polymers 
that last in the environment. Their remediation by fungi is 
also reported by Pleurotus ostreatus (Luz et al., 2013). Merits of 
Mushroom in bioremediation owe to its high accumulation 
rate of heavy metals like lead, cadmium, magnesium, nickel 

since mushrooms require these elements for their metabolic 
processes (Gast et al., 1988).

Mushrooms renew polluted soil via 3 steps biodegradation, 
bioconversion, and biosorption. Extracellular enzyme 
production (peroxidases, cellulases, ligninase) aids polycyclic 
aromatic hydrocarbons (PAHs) degradation (Nyanhongo et 
al., 2007). A bioconversion end product, mushroom, can be 
cultivated on lignin and cellulose waste. They can bio-transform 
the vegetable biomass into carbohydrates (beta-glucan), 
proteins, enzymes (Khaund and Joshi, 2014; Kozarski et al., 2015).

Biosorption is the assimilation of heavy metals from an 
aqueous solution by utilizing energy. This process aids heavy 
metal remediation. Fungal mass carrying out this process 
binds heavy metals on their surface. Pleurotus tuber-regium 
can bio-absorb heavy metals from soil polluted with fertilizers 
(Adongbede and Okhuoya, 2011). Volvariella volvacea, Tricholoma 
saponaceum, and Pleurotus sajor-caju efficiently uptake heavy 
metals, but the metals had a toxic effect on the species 
(Purkayastha and Mitra, 1992; Kim and Kim, 2001; Jain et al., 1988). 
Toxicity may be attributed to the low enzymatic breakdown 
of compounds, which may be lethal for the mushrooms. Such 
mushrooms are regarded as hazardous wastes, so they become 
unfit for consumption. As mycelial growth occurs on agricultural 
waste, the whole process being biological is not expensive or 
habitat destructive. Aspergillus tubingensis can grow on plastic 
surfaces and help in the bioremediation of polymer.

Clemmensen et al. (2013) reported the fact that around 70 
percent of the carbon treasured inside boreal forests comes 
from dead roots and associated fungi (mycorrhizal association). 
Cryptococcus neoformans can withstand irradiation. Their 
melanized form was isolated from the Chernobyl nuclear power 
plant with highly irradiated surroundings. Melanin scavenges 

Table 1: An overview of a few toxic compounds and the fungi involved in their remediation

S.No. Name of Fungi Compounds References

1. Heavy metals

Agaricus bisporus, Lactarius piperatus, Pleurotus ostreatus Cadmium Tay et al. (2011);
Nagy et al. (2013)

Flammulina velutipes Copper Luo et al. (2013)

2. Trametes hirsute

Textile dyes

Abadulla et al. (2000)

Aspergillus flavus Andleeb et al. (2012)

Aspergillus niger, Trichoderma viride Jebapriya and Gnanadoss (2013)

3. Exophiala xenobiotica, Aspergillus flavus Petroleum products Adekunle and Oluyode (2005); Isola et 
al. (2013)

4.

PAHs

Pleurotus ostreatus i. Diphenyl ether Rosales et al. (2013)

Armillaria sp. ii. Anthracene Hadibarata et al. (2013)

Aspergillus niger iii. Benzopyrene Wunder et al. (1994)

Aspergillus niger, Agrocybe aegerita iv. Pyrene Hammel et al. (1986)

5. Pesticides

Trametes pubescens i. Chlorophenols Denizli et al. (2005)

Mucor alternans ii. DDT Anderson and Lichtenstein (1971)

Fusarium oxysporum iii. DDT Engst and Kujawa (1968)

White Rot Fungi iv. Chlorinated pollutants Arisoy (1998)
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free radicals and, thus, it is reported to have shielding attributes 
in a highly irradiated environment (Dadachova and Casadevall, 
2008).

Unique enz yme chain allows the fungi to digest 
lignocellulose, furnishing them with a crucial function inside to 
balance the carbon circle. The hydrocarbon chains, once broken, 
their nutrients are locked up in cellulose are ready to be used by 
plants. Toxic substances are broken down into less or nontoxic 
forms. Despite the enormous potential that mycoremediation 
holds, it has not been commercialized for large-scale usage. 
Fungi thriving in extreme climates are very economical for 
industrial purposes due to their tolerance of harsh conditions.

Their merits over bacteria correspond to the ubiquitous 
presence, greater growth proportion, hyphae network, 
production of degrading enzymes, and metal accumulation 
potential.

Myco r e m e d ia t i o n o f He av y Me ta l s

A definite group of heavy metals like Ag (Silver), Hg (Mercury), Mn 
(Manganese), Cu (Copper), Ni (Nickel), Sb (Antimony) constitute 
the Earth's crust, having high densities and atomic weights. They 
gain access to the food chain through polluted water, soil, food, 
and air sources. Usage of fertilizers and pesticides leads them to 
get incorporated into food products that we consume. A high 
concentration of heavy metals may actually have poisoning 
effects as they tend to bioaccumulate. They break into the water 
supply through industrial discharge that is being discarded in 
water-bodies and, in turn, altering human health by giving rise to 
liver and kidney damage, cancer, bone defects, gastrointestinal 
problems, and neurological disturbances.

Cadmium is present in phosphate fertilizers, alloys, PVCs 
(Polyvinyl Chloride), and petroleum products. Lead, mercury is 
present in batteries, cables and is emitted from coal combustion. 
Intake of contaminated water led to chronic diseases, for 
instance, Minamata disease in Japan that was caused due to 
consumption of methylmercury contaminated fishes (Harada, 
1995). Under excavating projects, cadmium was released into 
water-bodies, and rice cultivated using such contaminated water 
led to biomagnification in the human population. Consequently, 
Itai-Itai disease affected the people in that area (Abernethy et al., 
2010). Living fungi could be utilized to withdraw heavy metals 
appropriately from an aqueous medium as well as industrial 
effluents (Srivastava and Thakur, 2006).

Many other lethal diseases are due to heavy metal poisoning. 
Fungi have helped in eliminating heavy metals by displacing 
them from the soil and assembling them in their mycelia and 
fruiting bodies for further breakdown. Re-establishment of 
contaminated areas is executed employing macrofungi. A few 
macrofungal species incorporated in mycoremediation of heavy 
metals are Pleurotus ostreatus, Calocybe indica, Agaricus bisporus, 
Boletus edulis, and Polyporus sp. (Urban et al., 2005).

Microfungi, Aspergillus niger, has manifested to be a superior 
entity for chromium (Cr) remediation as it can stand and store up 
heavy metals (Thippeswamy et al., 2012). Maximum accumulation 
was of Pb (75.81%) accompanied by Zn (49.39%), Cu (45.35%), 
and Ni (25.20%). Biosorption of heavy metals has been seen in 
Aspergillus flavus with 22% Pb and 20% Cu aggregation (Akar 
and Tunali, 2006). Divergent strains of Trichoderma, Penicillium, 

and Fusarium can reduce and methylate arsenic as observed 
by X-Ray absorption studies (Su et al., 2012). Arsenic (As), a toxic 
pollutant and carcinogen, turns water non-potable and unfit for 
irrigation gradually sets foot in people consuming it. M. Singh 
et al. (2015) isolated 54 fungal strains from the middle Indo-
Gangetic Plains. Often encountered species were of Aspergillus, 
Trichoderma, Rhizopus, as well as Chaetomium species - making 
these candidates of arsenic mycoremediation. Arsenic uptake 
is believed to occur through glycerol, phosphate, and hexose 
transporters (Tsai et al., 2009).

The paper and pulp industry are among the pioneers of 
heavy metal impurities having Cu, Cd, Mg, Mn in the highest 
concentration. Aspergillus and Mucor species have been reported 
to pile them up in higher amounts. Mucor species prospers 
under abiotic stress conditions. Mucor circinelloides help in-situ 
bioremediation, and their activity can be enhanced by lessening 
ATPase activity (Zhang et al., 2017). Fungi have been elucidated 
to be least affected among a group of microbes in a study on 
culturable soil microbial population and the effect of antimony 
and arsenic on them (Wang et al., 2011). The outcome of five 
heavy metals (Copper, Zinc, Lead, Mercury, and Cadmium) on 
the growth of Pleurotus tuber-regium. Bioaccumulation of zinc 
was the highest (183.06 mg/kg at 2 m mol/L). Cd accumulation 
was satisfactory in contrast to Hg, which averted the growth. 
Pb affected the stipe morphology (Akpaja et al., 2012). He et al. 
(2018) reported that the species abundance kept reducing on 
incrementing uranium concentration. It led to the stimulation 
of certain functional genes, which can be integrated to gain 
in-depth knowledge of ecosystem parameters.

Myco r e m e d ia t i o n u s i n g Whi  t e-Rot Fu n g i

The unequalled potential of the white-rot fungi (WRF) in 
decaying lignin (heterogenous polyphenolic polymer) relates 
to them exhibiting enzymes that are lignin modifying. Thus, 
can eliminate environmental pollutants explicitly, herbicides, 
polychlorinated biphenyls (PCBs), organochlorines, and 
pesticides. The result of lignin degradation is a white-coloured 
appearance of wood and hence the name. These belong mostly 
to basidiomycetes and quite a few to ascomycetes. Being natural 
decomposers, they require a substrate for growth on pollutants 
such as polycyclic aromatic hydrocarbons, especially in soil. Their 
enzymes help in providing substrate for growth (Reddy, 1995; 
Baldrian et al., 2000; Pointing, 2001). Ligninolytic enzymes help 
in bio-transforming organic pollutants (Rodriguez-Rodriguez 
et al., 2013).

Comprising a few white-rot fungi are Fomes fomentarius, 
Ganoderma lucidum, Pleurotus ostreatus, Trametes sp., Lentinula 
edodes, Trichoderma viride, Phellinus pini, and Rhizopus sp. 
Pleurotus pulmonarius happens to be tested for crude oil, 
petroleum, and palm kernel mycoremediation. WRF embraces 
various mechanisms by integrating their enzymatic gift to 
degrade petroleum products (Fig. 1). The nutrient value was 
observed to have increased along with the bioaccumulation of 
heavy metals (Adenipekun and Lawal, 2011). Syringol derivatives 
of azo dyes and their decay by Trametes versicolor have been 
trialed by Martin et al. (2003). Biodegradation assays have also 
been executed to measure their possibility of wastewater 
treatment. Kapdan et al. (2000) considered Coriolus versicolor 
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to be able of biological decolorization of a textile dye, everzol 
turquoise blue. Trametestrogii, isolated from Tunisia, is also 
beneficial in the degradation of commercial dyes (Mechichi et al., 
2006). Pleurotus ostreatus and Irpexlacteus can generate a range 
of transformation products (chlorobenzoates, hydroxylated 
PCBs) by degrading PCB, a soil contaminant. Pleurotus ostreatus 
colonized the respective area and was superior in total to other 
genera (Stella et al., 2017). Irpex lacteus seems likely to be an 
alternative to chemicals for dye decolorization. The fungus 
produced lignin phosphate (LiP) and laccase enzymes on the 
medium spread with a heavy amount of nitrogen. It not only 
grew swiftly but also resisted suppression by soil bacteria - 
henceforth proving to be an ideal fungus in mycoremediation 
(Novotný et al., 2000). Lentinus subnudus, in Nigeria, has been 
studied to remediate crude oil spills (Adenipekum and Fasidi, 
2005).

En z ym e s u s e d by WRF i n Bi o r e m e d ia t i o n

Lignin, being the principal fungal enzyme aiding the 
mycoremediation process, is researched extensively by 
scientists. The fragmented lignin leads to a plentitude of 
degradation products that are absorbed along by hyphae for 
being additionally metabolized past the intracellular fungal 
mesh. Extracellular enzymes assisting lignin degradation by 
Phanerochaete chrysosporium are lignin peroxidase and glyoxal 
oxidase. Glyoxal oxidase apparently helps to activate lignin 
peroxidase by oxidizing the metabolites with the reduction 
of oxygen to water. Lignin peroxidase, in turn, oxidizes non-
phenolic aromatic nuclei in lignin (Kirk et al., 1992).

Ligninolytic Fungal Enzymes
Usefulness of WRF refers to their enzymes. Lignin peroxidase 
(a glycated heme protein) stimulates oxidation of unsaturated 
compounds with planar rings that are related to lignin in a 
hydrogen peroxide dependent manner. Therefore, with high 
redox potential, a plethora of chemicals and non-phenolic 
aromatic compounds can be oxidized (Reddy and Matthew, 
2001). The recalcitrant attribute of the lignin enzyme makes it 
hard to degrade. Conversion of manganese (+2) to manganese 
(+3) state via oxidation by manganese peroxidase depends 

on the hydrogen peroxidase method. Oxidation of phenolic 
substrates is accentuated by the Mn (III) state of the enzyme 
(Mester and Tien, 2000).

Laccase is the primary enzyme in the degradation process. 
They are multicopper oxidase enzymes (Viswanath et al., 2014) 
and can operate even in the absence of hydrogen peroxide 
(Hataka et al., 2001). Laccase likely oxidizes numerous aromatic 
and non-aromatic compounds, but they have a low shelf-life. 
They tend to engage in oligomerization and polymerization 
reactions of aromatic compounds. Laccase, combined with 
ultrasound, increases dye removal precision in wastewater. 
Nanobiotechnological studies on laccases for biosensor cell 
implantation have been done (Goncalves et al., 2015).

Additional enzymes that are engaged in the mycoremediation 
process fall under the cellulolytic enzyme category comprising 
cellulases (Trichoderma species), hemicellulases, pectinases, 
chitinases (Fusarium species), amylases (Aspergillus niger, 
Penicillium species), and proteases. WRF uses agricultural 
left over as a substratum for yielding the above-mentioned 
enzymes. Trametes versicolor degrades tribromophenol (TBP) 
by implying enzyme laccase (Donoso et al., 2008). Copper 
mineralizes lignin (Kües, 2015) and is used to remove water 
contamination.

Sophisticated and adequately coordinated collaboration 
between the termites and the fungi allows utilization of 
lignocellulose. Termitomyces albuminosus (a symbiotic fungus) 
produces extracellular phenol oxidases. Two genes encoding 
MnP (tam 1 and tam 2) were studied. They have an essential 
amino acid for peroxidase activity and manganese (Mn II) 
binding sites, indicating MnP encoding. The symbiotic link 
between termites and a fungus assists in lignin decomposition 
and total bio recycling of plant litter (Ohkuma et al., 2001). 
Catalase and polyphenol oxidase could be used to monitor 
the bioremediation process as their concentration decreases 
in contaminated soil with oil concentration. The soil was 
contaminated with different concentrations of oil (Lin et al., 
2009).

No n-l i g n i n o ly t i c Fu n g a l En z ym e s

Besides hydrolytic enzymes, fungi also make use of cyt P450-
dependent monooxygenases in addition to glutathione 
S-transferases enzyme to handle pollutant degradation. 
Sutherland et al. (1995) stated that the metabolism of PAHs 
occurs by oxidation of aromatic ring to obtain arene oxide. 
Dioxygenase enzymes are also reported. Apart from this, two 
fungal cyt P450 monooxygenases, procured out-of Fusarium 
oxysporum, were replicated. Both of them were recognized as 
wonderful catalysts in the production of ω-hydroxyl fatty acids 
(Durairaj et al., 2015).

Myco r e m e d ia t i o n o f Po lyc yc l i c Ar o m at i c 
Hyd r o c a r b o n s (PAHs)
Organic pollutants mostly comprise PAHs, and these are 
hydrocarbons of a heterogenous group along with multiple 
aromatic rings. It is generated from the partial decomposition of 
organic matter emerging through petroleum spills, incinerators, 
and incomplete combustion of coal, wood (Kadri et al., 2017). 

Fig. 1: Mechanism employed in mycoremediation of petroleum-
contaminated soil (Adapted from Dickson et al., 2019).
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Valentin et al. (2007) conducted an experiment that projected 
the ability of Bjerkandera fungus species to promote decay of 
harmful compounds as pyrene, dibenzothiophene, phenalene in 
a slurry reactor. Pleurotus ostreatus helps in PAH removal (Eggen 
and Majcherzykb, 1998). Coprinus comatus basidiocarp harvested 
from useless paper that had 47.9 ppm lead contamination - finally 
reported 16.2 ppm lead uptake from the paper pulp (Dulay et 
al., 2012).

The removal ef f iciency of petroleum hydrocarbon 
by Pleurotus tuber-regium was 20%, 18.7% and 18.8% at 
contamination rates of 1.0%, 2.5%, and 5.0% respectively. 
Meanwhile, at the same contamination levels, amid three 
months, the removal efficiency increased to be around 40%, 
39%, and 38%, respectively (in Pleurotus tuber-regium), and it 
was the highest. However, the minimum remediation capacity 
was observed in Pleurotus pulmonarius. The heavy metal and 
hydrocarbon compound eradication effect of Pleurotus tuber-
regium was much better than of Pleurotus ostreatus and Pleurotus 
pulmonarius (Adewole et al., 2017). Pharmaceutical compounds 
(PhC) persist in water bodies and lead to water toxicity. 
Wastewater treatment plants are not efficient in their removal 
(Teijon et al., 2010). Demand for fungi-based biological treatment 
for getting rid of PhC has received recognition due to the work 
of researchers on this (Gunde-Cimermon et al., 2000). PhC as 
naproxen, codeine, diazepam, metoprolol is also degraded by 
WRF, Trametes versicolor (Asif et al., 2017). Purchase et al. (2009) 
communicated about Beauveria bassiana isolates from raised 
marshlands collecting municipality influx, stocked up to 0.6% 
of zinc and 8.5% of lead. X-Ray spectrophotometric studies 
outlined that immobilization combined with precipitation might 
get utilized via strains of fungi to decipher heavy metal uptake, 
accompanying the biosorption process. Ganoderma lucidum is 
effective in PAH remediation. 

16S rRNA phylogeny has been embraced for explaining the 
conformational dynamics of microbes and their genes linked to 
the remediation of polycyclic aromatic hydrocarbons. Weighing 
obtained data with 16S rRNA profiles can give details on intricate 
taxonomic studies to start a relation between them and proteins 
(Sakshi and Haritash, 2020). Lignin degrading enzymes as 
manganese peroxidase and laccases were produced. Ganoderma 
lucidum degraded 99.55% and 99.58% of phenanthrene and 
pyrene, respectively (Agrawal et al., 2018). Pycnoporus sanguineus 
strain degrades 68.0% of anthracene at in-vivo conditions 
and revealed maximum laccase activity. Piperonyl butoxide 
addition into a liquid culture increased the degradation of 
anthracene to 73.0%. Zhang et al. (2015) also worked to deduce 
PAHs metabolism by laccases, cyt P450, and laccases present 
in mycelium.

The pioneering work narrating engagement of Trichoderma 
asperellum H15 strains for polycyclic aromatic compounds 
degradation in soil was established. The degradation of 
phenanthrene in heavily contaminated soil was noticed to be 
approximately 79.9% following two weeks (Zafra et al., 2015). Two 
types of aromatic hydrocarbons, anthracene, and benzathine 
are reported to be mycoremediated by fungal species confined 
in polluted coastal saline deposits. GC/MS studies revealed 
that Fusarium solani strains degrade them to give rise to 
ortho-phthalic acid. Unbound laccase has been diagnosed 

with extracellularly (Wu et al., 2010). Pleurotus ostreatus (OST-1) 
manifested good results in eliminating organochlorines as DDT, 
HCH, Aldrin, Dieldrin (Sadiq et al., 2015). Trichoderma viride had 
been described to remove cyclodienes as aldrin and dieldrin 
(Kamei et al., 2010). Limitation in their removal is due to their 
hydrophobic nature (Urrea et al., 2010). Two saprophytic strains 
of microfungi, Trichoderma hamatum, and Rhizopus arrhizus have 
DDT tolerance and show better results. They demonstrated high 
metabolic activity for the depletion of carbon sources amidst 
the attendance of an organochlorine (DDT) in soil. Possession 
of antioxidant enzymes to level up with the chemical stress-
induced by DDT presence (Russo et al., 2019).

Myco r e m e d ia t i o n by Ma r i n e Fu n g i

Marine fungi thrive under diverse climatic situations (high 
pH, salinity) and cope up with a harsh atmosphere that prepares 
them to be resilient. They devour dead organic matter and 
balance the nutrient recycling, thus, supporting fisheries and 
providing nutrients to mangroves simultaneously. Chromium 
toleration, along with their removal potential, has been 
displayed by Aspergillus flavus and Aspergillus niger, seaweed-
linked fungus species. Their hexavalent chromium resistance 
has been evaluated, though it increased with increasing Cr (VI) 
concentration (Vala et al., 2004).

Marine fungal strains of Dendryphiella salina can absorb 
approximately 90% of Hg (II) from liquid media. Mendozoa et al. 
(2010) elucidated that Den 32 strains had elevated absorption 
efficiency as compared to Den 35 strains for Hg bioremediation. 
Fungi growing in marine habitats, such as Aspergillus species 
and Rhizopus species, have been revealed to be arsenic tolerant 
by accumulating it. They were subjected to 0.025 kg/m3 and 
0.05 kg/m3 of sodium arsenite. Rhizopus is suitable for arsenic 
remediation in water as deposition increases with the increasing 
concentration of arsenic (Vala and Sutariya, 2012).

Corollospora lacera along with Monodictys pelagica 
heap up lead, cadmium extracellularly (Taboski et al., 2005). 
Mycoremediation of hexavalent chromium (Cr) by marine 
fungi, Trichoderma viride, in the Mediterranean Sea has been 
observed. The transmission electron microscopic method 
revealed that chromium did not hinder its mycelial or conidial 
structures (El-Kassas and El-Taher, 2009). In a particular study, 
it has been established about Aspergillus sydowii in addition 
to Aspergillus destruens that they facilitate polycyclic aromatic 
hydrocarbon and chlorinated hydrocarbon elimination in a 
halophytic environment. Incorporating benzo[a]pyrene with 
phenanthrene in the form of substrate, they removed these 
toxins via bioabsorption (González-Abradelo et al., 2019). 
Aspergillus oryzae has the potential to eliminate monocyclic 
aromatic hydrocarbons compounds (Benzene, toluene, hexyl 
benzene, and xylene) in waste discharge (El-Kassas and El-Taher, 
2010).

Co n c lu s i o n a n d Fu t u r e Pr o s p e c t i v e

Mycoremediation is a sustainable method for cleaning 
contaminated sites and detoxification of toxic compounds. It is 
a necessity to make reforms in the scientific and technical arena 
for a better understanding of various phenomenons. But in the 
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long run of chasing such aims, we should not forget that we have 
to refrain from creating new problems for our planet. Engaging 
a lot of heavy machines for degradation of hazardous wastes 
consumes a lot of power and energy, hence in turn, disrupting 
surrounding environment. Except for being highly expensive, 
they also lead to environmental imbalance. The persistence of 
organic pollutants and heavy metal wastes require strategies 
directed towards their removal.

By unravelling metabolomics, metagenomics, and meta-
transcriptomics, comparative studies on the behaviour and 
remediation capabilities of discrete fungal colonies in the 
contaminated area, can be attained. It can also examine new 
fungal species aiding degradation, their molecular mechanism 
involved and the methods used to increase the enzyme 
manufacturing process. More studies are needed for analysing 
the role played by transporters for subsisting the toxic chemicals. 
Focus on the characterization of fungal metabolites, exploring 
more species involved in the process, examining its chemical 
structure and toxicity levels would help in concluding which 
species can be exploited more for remediation. The role of 
fungal mycotoxins in bioremediation requires consideration. 
This information can help us in genetic engineering of the 
strains to improve them for their appropriate use. Their role in 
plastic degradation also needs to be analyzed extensively so 
that it may help us in some way to win the battle of enormous 
solid waste management. Mushroom production needs to be 
enhanced as their mycelium also assists in biosorption due to 
its large surface area.

Conclusively, much light needs to be shed on the role 
of macrofungi in bioremediation that remains a field to be 
extensively explored. The popularization of the mycoremediation 
methods is the demand of time with the globally rising 
unpredictable environmental issues.
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