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Ab s t r Ac t
Forests are the main reservoir of terrestrial carbon and thus play a significant role in the global carbon budget. To quantify the forest 
carbon stock, it is essential to assess the forest biomass. The regular monitoring of forest biomass is necessary to understand the carbon 
source/sink nature of the forests. Integration of field inventory with remote sensing (RS) data offers an efficient and reliable method 
for large-area forest aboveground biomass (AGB) estimation and mapping. The availability of the Earth observation data has made it 
feasible to quantify forest carbon stocks from local to global scales.The availability of optical satellite data for the past five decades 
has led to its extensive use in forest biomass studies. Spectral reflectance and spectral indices derived from optical RS data are used as 
predictor variables for AGB estimation. However, cloud cover and saturation of spectral values limit the use of optical RS data in AGB 
studies. Despite the limitations, optical RS data has been extensively tested and used for forest biomass/carbon assessment from local 
to global levels due to its long legacy. In this context, the present review highlights the utility of optical RS data in forest AGB estimation 
using various approaches.
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In t r o d u c t I o n

Forests provide a plethora of ecosystem services that are key for 
the survival of life on the planet Earth. One of the significant 

roles played by the forests is balancing the atmospheric CO2 
and thus regulating the global climate and mitigating global 
warming. Forests are the main reservoir of terrestrial carbon 
and thus, play a vital role in the global carbon budget (Li et al., 
2020; Nandy et al., 2021). The carbon is stored in the forest as 
biomass, which is the total amount of above- and belowground 
organic matter of living as well as the dead plant parts (FAO, 
2005). The accumulated carbon is stored in five different pools 
in the forest ecosystem: aboveground biomass, belowground 
biomass, deadwood, litter, and soil organic matter. The major 
factors which influence the amount of carbon in these pools are 
age, species composition, disturbances, and soil characteristics. 
The assessment of forest biomass is essential to quantify the 
carbon stock. To understand the carbon source/sink nature of 
the forests it is necessary to monitor biomass at regular intervals 
varying from months to years (Nandy et al., 2019). 

Biomass can be assessed by various methods, viz., harvest, 
field inventory, and integration of field inventory and remote 
sensing (RS) data (Kushwaha et  al., 2014). The assessment of 
aboveground biomass (AGB) requires extensive field inventory. 
It is laborious and inapt for inaccessible are asandhence, 
practicable only in relatively smaller and accessible areas. 
Conversely, integrating field inventory with RS data offers 
a competent and reliable method of AGB estimation and 
mapping (Kushwaha et  al., 2014; Lu et  al., 2014; Manna et  al., 
2014; Heyjoo and Nandy, 2014; Yadav and Nandy, 2015). RS has 
played a vital role in quantifying carbon stocks during the last 
five decades.The availability of the Earth observation data has 
made it feasible to quantify forest carbon stocks from local to 
global scales. A  variety of passive optical multispectral and 
hyperspectral images and active sensors like Radio Detection 
and Ranging (RADAR) and Light Detection And Ranging (LiDAR) 
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data are nowadays available for AGB studies. However, due to 
the availability of optical satellite data for the past five decades, 
it has been widely used for forest biomass studies. 

Optical Remote Sensing Data and Its Derived Variables 
used for Forest Biomass Estimation
Due to its various advantages, such as synoptic view, large-
area coverage, availability of long-term temporal data, and 
accessibility to remote areas,optical RS data have been 
extensively used for AGB estimation globally (Muukkonen 
and Heiskanen, 2007; Kushwaha et al., 2014; Manna et al., 2014; 
Heyojoo and Nandy, 2014; Yadav and Nandy, 2015). Spectral 
reflectance and spectral indices derived from optical RS data 
are used as predictor variables for AGB estimation (Nandy 
et  al., 2019). However, cloud cover and saturation of spectral 
values limit the use of optical RS data in AGB studies. Despite 
the limitations, optical RS data has been extensively tested and 
used for forest biomass/carbon assessment from local to global 
levels due to its long legacy. 

Optical sensors acquire images in the visible, near-infrared, 
and shortwave regions of the electromagnetic spectrum. 
In addition to the spectral variables, texture variables derived 
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from the optical data are also used as predictor variables for 
biomass/carbon estimation. Spectral indices have been widely 
used for generating empirical relationships of biomass estimates. 
Table 1 shows the most frequently used spectral indices for 
biomass/carbon estimation. Normalized difference vegetation 
index (NDVI), enhanced vegetation index (EVI), soil-adjusted 
vegetation index (SAVI), and modified soil-adjusted vegetation 
index (MSAVI) are some of the vegetation indices that have been 
used extensively for forest biomass studies (Nandy et al., 2019). 

FI e l d In v e n to ry F o r bI o m A s s es t I m At I o n

For RS-based forest AGB assessment, field inventory data forms 
an integral part. In this approach, the field-measured biomass is 

considered as the dependent variable and the RS data-derived 
variables are considered as the independent variables. Hence, 
the identification of appropriate RS data-derived variables are 
essential for finding their relationship with the field-estimated 
biomass. By linking the dependent and independent variables, 
various models were developed for biomass estimation. The 
model output needs to be validated to evaluate the model's 
performance. Validation is done using field-measured biomass. 
Usually, 70% of the field-measured biomass data is randomly 
identified as a training set and the remaining 30% of data is used 
as a validation set. The uncertainty analysis of the prediction is 
also carried out. Hence, accurate field-measured biomass data 
is crucial for spatial biomass estimation using RS. 

Table 1: Spectral indices widely used as predictor variables for forest biomass/carbon estimation.

Sl. No. Spectral indices Formula Reference

1. Simple Ratio(SR) Birth and McVey, 1968

2. Moisture Stress Index (MSI) Hunt and Rock, 1989

3. Land Surface Water Index (LSWI) Xiao et al., 2002

4. Normalised Difference Vegetation Index 
(NDVI)

Rouse et al., 1974

5. Wide Range Vegetation Index (WDRVI)

(a has a value of 0.1– 0.2)

Gitelson, 2004

6. Enhanced Vegetation Index (EVI) Huete et al., 2002

7. EVI2 Jiang et al., 2008

8. Visible Atmospherically Resistant Index 
(VARI)

Gitelson et al., 2002

9. Global Vegetation Moisture Index (GVMI) Ceccato et al., 2002

10. Soil-Adjusted Vegetation Index (SAVI) Huete, 1988

11. Optimized Soil Adjusted Vegetation Index 
(OSAVI)

Rondeaux et al., 1996

12. Renormalized Difference Vegetation Index 
(RDVI)

Roujean and Breon, 
1995

13. Perpendicular Vegetation Index (PVI) Richardson and 
Wiegand, 1977

14. Transformed Soil Adjusted Vegetation Index 
(TSAVI)

Baret and Guyot, 1991

15. Modified Soil Adjusted Vegetation Index 
(MSAVI)

Qi et al., 1994

16. Difference Vegetation Index (DVI) Tucker,1979
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Biomass is calculated from the field inventory data by using 
species as well as site-specific allometric and volumetric 
equations. However, in many cases in India, allometric equations 
are not available. In such cases, species and site-specific 
volumetric equations are generally used for AGB calculation. 

The stratified random sampling approach is generally used 
for field inventory associated with RS-based forest biomass 
studies in heterogeneous forests. In this case, forest type and 
forest canopy density are considered as stratum (Yadav and 
Nandy, 2015; Nandy et al., 2017).Sample plots of 0.1 ha (31.62 
mx31.62 m) are laid down in different strata based on probability 
proportional sampling. First of all, a pilot study is carried out for 
finding out the total number of sample plots to be laid in the 
whole area using equation 1 (Chacko, 1965):

  (1)
where, N is the total number of sample plots, t is the 

statistical value at 95% significance level, CV is the coefficient of 
variation and SE% is the standard error percentage. 

The total numbers of sample plots are proportionally 
distributed in the different strata using equation 2 (Cochran, 
1963):

  (2)
Where, nh is the number of samples in h stratum, Nh is the 

size of h stratum, N is the total population size, and n is the total 
number of samples.

The field inventory design is depicted in Fig. 1. In different 
strata, sample plots of 0.1 ha (31.62m x 31.62m) are laid and the 
geographical coordinates of each plot are noted down. For tree 
biomass assessment, in each plot, the name of the tree species, 
its girth at breast height (gbh) (1.37m above ground) and height 
are measured. For shrubs, including saplings, two sample plots 
of 5 m x 5 m are laid at the opposite corners of the 0.1 ha plot. In 
the same 0.1 ha plot, 5 sample plots of 1 m x 1 m at four corners 
and one 1 m x 1 m at the center were laid for herbs and litter. The 
volume of individual trees of the sample plot is usually calculated 
using diameter at breast height (dbh) value in the species and 
site-specific volumetric equations (FSI, 1996). The AGB of the 

tree species is calculated by multiplying the tree volume with 
the species and site-specific wood density(FRI, 2002) and further 
multiplying it by biomass expansion factor (BEF) (Haripriya, 
2000). Below ground biomass (BGB) is calculated using the root-
shoot ratio. However, there is a scarcity of BGB values of trees of 
India. For shrubs, the individuals of each species inside the 5 m 
x 5 m plot are counted. Small portions of the shrub species are 
collected and the fresh weight is taken. For herbs and litter, fresh 
weights of all the materials inside the 1 m x 1 m plot are taken 
and a small portion of it is collected. The representative samples 
of shrubs, herbs, and litter are then kept in a hot air oven at 80°C 
for drying till constant weight. Finally the total biomass of the 
0.1 ha plot is calculated by adding AGB, BGB, shrubs, herbs, and 
litter biomass. Total carbon stock is estimated by multiplying 
the total biomass by 0.47 (IPCC, 2006). This inventory process is 
repeated for all the 0.1 ha plots laid in different strata. 

Approaches for RS-based Forest Biomass Estimation
To map the spatial distribution of biomass, a relationship is 
established between the satellite data-derived variables and 
field-measured biomass. Fig. 2 shows the general approach 
used for mapping the spatial distribution of AGB.

The following approaches are generally used for mapping 
the spatial distribution of AGB using optical satellite data.

Regression Modelling
In regression modelling, simple linear regression (SLR) and 
multiple linear regression (MLR) modelling techniques are widely 
used. In these modelling approaches, the spectral variables 
are considered as independent variables whereas the field-
measured biomass is the dependent variable. In these modelling 
techniques, the basic assumption is that the spectral variables 
are correlated with biomass and there is a limited correlation 
among the independent variables (Lu et al., 2004). In SLR, only 
one independent variable is correlated with the dependent 
variable, whereas in MLR more than one independent variable 
is considered to estimate biomass. These modelling approaches 
were frequently used earlier. However, these kinds of modelling 
approaches are not effective in high biomass areas. 

Kushwaha et  al. (2014) assessed the growing stock and 
woody biomass in Asola-Bhatti Wild life Sanctuary, Delhi, India. 
In this study, merged data of IRS-P6 LISS-IV and Cartosat-1 PAN 
was used. An SLR was established between NDVI and field-

Fig. 2: The general approach used for mapping the spatial 
distribution of AGB.Fig. 1: Sampling design.
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measured growing stock and biomass. They observed a strong 
correlation between the NDVI and the growing stock (R2=0.84) 
as well as with biomass (R2=0.88). This study demonstrated 
that growing stock and woody biomass could be effectively 
estimated with high accuracy using optical remote sensing data 
in low biomass areas. 

AGB was estimated in a 5-year-old Avicennia marina lantation 
of Indian Sundarbans by Manna et al. (2014) using IRS LISS-IV 
satellite data and field-measured AGB. The band reflectance 
values and the vegetation indices, viz., NDVI, optimized soil 
adjusted vegetation index (OSAVI), and transformed difference 
vegetation index (TDVI) were correlated with the AGB. OSAVI 
showed the strongest positive linear relationship with the 
AGB (R2= 0.72) as it is known to nullify the background soil 
reflectance effect added to vegetation reflectance. The study 
highlighted that this approach can be effective for monitoring 
and management of young mangrove plantations in a time and 
cost-effective manner. Heyojoo and Nandy (2014) estimated AGB 
of trees outside forests in Bijnor district of Uttar Pradesh, India 
using IRS P6 LISS-IV satellite data coupled with field inventory. 
In this study, spectral models of AGB with different bands and 
indices were established and the best linear relationship with 
the red band was observed (R2 = 0.55). Using this relationship, 
the spatial distribution of AGB was mapped. 

Aboveground woody biomass (AGWB) was mapped by 
Yadav and Nandy (2015) in Timli Forest Range of Uttarakhand, 
India using IRS P6 LISS-III and field inventory data. A stratified 
random sampling approach was used to collect the field 
inventory data. A positive relationship was found between 
NDVI and AGWB, though it was very low. A biomass map was 
prepared using NDVI with a root mean square error (RMSE) of 
67.17 Mgha-1. Thestudy did not find any significant relationships 
between individual spectral bands and AGWB as the values 
of spectral bands was saturated in high biomass areas. This is 
well-established that passive optical RS-based biomass models 
perform better in low biomass regions (Anaya et  al., 2009; 
Kushwaha et al., 2014; Manna et al., 2014). 

Geostatistical Modelling
The regression modelling fails in many cases as the independent 
spectral variables are often found to be linearly correlated 
(Lu, 2005) which may have non-linear relationships with the 
biomass (Li, 2010). Non-parametric geostatistical approaches, 
like k-Nearest Neighbour (k-NN). Ordinary Kriging (OK), Universal 
Kriging (UK), Co-Kriging (CoK) and Regression Kriging (ReK)can 
be used effectively to address this limitation. Yadav and Nandy 
(2015) mapped AGWB in the Timli Forest Range, Uttarakhand, 
India using k-NN and CoK. k-NN using Mahalanobis distance 
showed the best result (RMSE=42.25 Mgha-1), followed by 
fuzzy distance (RMSE=44.23 Mgha-1) and Euclidean distance 
(RMSE=45.13 Mgha-1), whereas using CoK technique, the RMSE 
was found to be 52.2 Mgha-1. The study emphasized that the 
integration of field-measured biomass, RS data, and non-
parametric methods, like k-NN and CoK are effective in AGB 
mapping, especially in high biomass regions.

Watham et al. (2016) used field-measured AGB, Landsat 8 OLI 
derived variables and geostatistical tools for AGB mapping in 
Barkot Flux Tower site, Uttarakhand, India. AGB prediction maps 

were prepared using OK, UK, CoK, and ReK methods. CoK with 
Land Surface Water Index had the lowest RMSE of 58.77 Mg ha-1 
(R2=0.63). LSWI performed best because of its sensitivity to leaf 
moisture. This study also highlighted the utility of geostatistical 
modelling in AGB mapping.

Object-based Image Analysis
For assessing the carbon stocks of individual trees, very high-
resolution satellite (VHRS) imagery is used. Object-based image 
analysis (OBIA) technique is used for extracting individual tree 
crowns and the canopy projection area (CPA) from the VHRS 
imagery and by developing a relationship between CPA and 
dbh of the tree, the carbon stock can be quantified and mapped. 
Singh (2014) quantified and mapped the aboveground carbon 
stock of sal (Shorear obusta) forests of Doon valley, India using 
WorldView-2 satellite imagery and field data. OBIA was used 
for image segmentation (accuracy - 72.12%) and classification 
(accuracy - 84.82%). It facilitated the delineation of individual 
tree crowns and CPA calculation. This study revealed a strong 
relationship between dbh and CPA of trees and, hence, CPA 
and tree carbon. It also highlighted that VHRS imagery coupled 
with OBIA can be effectively used to quantify and map the tree 
carbon stock. Pandey et  al. (2020) assessed and mapped the 
aboveground tree carbon stock using WorldView-2 satellite 
imagery in the Barkot forest of Uttarakhand, India. OBIA was 
carried out for image segmentation and classification. The 
segmented image was classified into sal, teak and shadow. The 
multi-resolution image segmentation and the classification 
accuracy were found to be 74% and 83%, respectively. Using 
the relationship between CPA and carbon, the carbon stock of 
individual trees was mapped. The study highlighted the utility 
of OBIA and VHRS imagery for high resolution carbon stock 
mapping of forest.

Machine Learning-based Modelling
The machine-learning algorithms, such as random forest 
(RF) (Breiman, 2001), support vector machine (SVM) (Vapnik 
et al., 1997),and Artificial Neural Network (ANN)(Haykin, 1994)
can be effectively used for variable optimization and also for 
modelling the spatial distribution of AGB. Nandy et al. (2017) 
estimated forest biomass by incorporating Resourcesat-1 LISS-III 
data with field-measured biomass using ANN in Barkot forest, 
Uttarakhand, India. The spectral and textural variables were 
ranked with respect to the dependent variable forest biomass 
using ANN. The top ten variables were used to generate an MLR 
model for predicting the spatial distribution of biomass with 
an R2=0.70 and RMSE= 93.41 Mgha-1. The study revealed the 
capability of the ANN technique for optimizing the independent 
variables and predicting the AGB with an optimum number of 
independent variables.

Dang et al. (2019) used Sentinel-2 satellite imagery combined 
with field-measured AGB to estimate and map forest AGB in Yok  
Don National Park, Vietnam using RF algorithm. They extracted 
132 spectral and textural variables from Sentinel-2 imagery for 
predicting the AGB and found that a combination of spectral and 
texture variables could effectively predict AGB. RF was further 
used to optimize the number of variables. A combination of 11 
spectral and textural variables was used to develop a model 
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for estimating AGB with high accuracy (R2 = 0.81, RMSE = 36.67 
Mg ha-1and %RMSE of 19.55%). The study demonstrated that 
Sentinel-2 imagery in conjunction with RF has the potential to 
effectively predict the spatial distribution of forest AGB with 
high accuracy.

co n c lu s I o n

Forests play a crucial role in the carbon cycle, and hence, 
timely mapping and monitoring of forest carbon stock can 
act as a vital indicator of climate change. Forest biomass maps 
are important for forest management and planning, carbon 
accounting, carbon dynamics analysis, and forest productivity 
modelling. The reliable estimates of forest biomass are essential 
to address these issues effectively. The RS applications provide 
reasonable AGB estimates compared to labour-intensive, 
economically expensive, and time-consuming traditional 
techniques. The long legacy of the optical RS data provides 
means to monitor the forest AGB in combination with the in-situ 
biomass inventory. The abundantly available optical RS data 
has led to the mapping and modelling forest AGB from local 
to global scales. Various modelling approaches ranging from 
simple and multiple regression methods to machine learning 
algorithms have been utilized to map the spatial distribution 
of forest AGB at varying temporal scales. The optical RS data 
perform well in the low biomass density forests. The problems 
of spectral values saturation in high biomass areas and cloud 
cover may limit their use for AGB studies in high biomass forests.
In synergy with various active sensor data, the optical RS data will 
continue to further contribute to the mapping and monitoring 
of the forest AGB.
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