Study of Ethnomedicinal Plants Found in Different Villages of Hisar, Haryana in Winter Season

Gajanand Modi^{*}, Babita DOI: 10.18811/ijpen.v9i03.12

ABSTRACT

For years, medicinal plants have been a primary source of rectifiers for healthcare. Information about how plants work is either passed down from elders, learned through experience or via trials, but it isn't always proven. A similarly extensive repository of ethnomedical knowledge is North Haryana. The present study demonstrate the importance of plants from the Hisar district in the state of Haryana for ethnomedicine. Field checks and in-depth interviews conducted in the fields between 2022 and 2023 were used to gather the data. The current study contains thorough ethnomedical information, including common and botanical names, family names, pharmaceutical delivery methods, lozenge dosage forms, and ailments addressed. It was determined that this region still has a wealth of practical ethnomedical expertise and may contribute to further herbal medicine development programs.

Keywords: Ethnomedicinal, Ethnobotanical Plants, Herbal, Traditional Resources and Hisar Region.

International Journal of Plant and Environment (2023);

ISSN: 2454-1117 (Print), 2455-202X (Online)

Introduction

Two Greek terms are combined to form the word *ethnobotany*. American taxonomy botanist John W. Harshberger first used the term in 1895. The study of how humans and plants interact with a focus on traditional tribal culture is known as ethnobotany. Ethnobotany is now an established branch of science. Human beings have been fascinated by the diversification of natural things. Because of their fascination, they have discovered plants for food, fuel, medicines, floriculture, and ceremonial purposes. They have explored endless possibilities using multiple methods. Such rapidly changing lifestyles and increasing urbanization have prompted the public to relook at the utilitarian purposes of plants.

Charaka has a substantial amount of Vedic literature pertaining to ethnobotany in our nation of India. This nation was largely covered in a forest, which supported a variety of healing plants. The Ayurvedic medical system made heavy use of plants. Many different varieties of medicinal plants may be discovered in India, which has a rich biosphere for plant resources. In several regions of the country, research on the use of traditional remedies and medicinal plants was conducted (Jain *et al.*, 2010; Yadav and Bhandoria, 2013). Some work related to this was done in Haryana (Jain and Verma, 1987; Jain *et al.*, 1995; Lal and Yadav, 1983; Yadav *et al.*, 2017). "Study of ethnobotanical plants found in Mirka, Tokas and Patan Villages in Hisar district, Haryana" (Modi and Babita 2023)

In India, Haryana is a state in the north of the country. It was established on November 1, 1966. Flora refers to plant life forms occurring within a given interval. Hisar district is rich in floral divergence. Flora supports our ecological stability. Flora are oxygen producing and carbon dioxide consuming system without which human can't live. Study of Ethnobotanical Plants Found in Satrod Khurd and Dabra villages in Hisar (Modi.and Babita 2022).

The World Health Organisation (WHO) estimates that 65–80% of the global population, especially in developing nations, relies on plants for healing, and this is widely accepted

Faculty of Basic and Applied Sciences RNB Global University, Bikaner, Rajasthan, India.

*Corresponding author: Gajanand Modi, Faculty of Basic and Applied Sciences RNB Global University, Bikaner, Rajasthan, India, Email: drgajanandmodi@gmail.com

How to cite this article: Modi, G., Babita. (2023). Study of Ethnomedicinal Plants Found in Different Villages of Hisar, Haryana in Winter Season. International Journal of Plant and Environment. 9(3), 282-286.

Submitted: 29/05/2023 Accepted: 20/07/2023 Published: 28/09/2023

in traditional cultures. This is frequently because of poverty and a lack of access to modern medicine (Awoyemi *et al.*, 2012). The distinctive quality of traditional knowledge, which has never been kept in writing but has instead been spoken or orally transmitted across generations, is that it is transgenerational. It is the knowledge that locals have acquired via experience and adaptation to a community's unique culture, environment, and way of life through time. These historical treasures are valuable economic resources that may be traded, licensed, or creatively used to generate money and improve quality of life.

From an ecological, social, and economic standpoint, medicinal plants' significance is being increasingly understood (Negi et al., 2019). Indigenous knowledge and the promotion of environmental conservation have been intertwined via the study of medicinal plant conservation and usage (Rana et al. 2017). On the one hand, the increased use of allopathic treatment has led to a change in people's attitudes towards the practice of herbal medicine, which has decreased. On the other hand, the contemporary herbal, pharmaceutical, food, and cosmetic businesses frequently take use of ancient applications and practices. But more recently, discussions among scientists, ecologists, and conservationists have been sparked by declining natural populations of medicinal plants as a result of unlawful extraction. Due to overuse and careless harvesting from the forest and alpine meadows, a number of medicinal plants have

been categorized as endangered, vulnerable, and threatened (Uniyal et al., 2006).

MATERIAL AND METHODS

Study Site description

The present ethnomedicinal study was conducted in Hisar district of Haryana state. An ethnobotanical survey was done from November 2022 to February 2023. Five villages of Hisar

district were surveyed: Satrod Khurd, Dabra, Tokas, Patan and Mirka villages. Hisar district is located at 29.09 N 75.43 E in western Haryana. Its height be sea level is 215 meter.

Data Organization and Collection

The field trip's entire data collection was based on interviews. Images as well as the botanical name, popular name, plant component and medicinal application, were documented in this material. All of the gathered plants were recognized

Table 1: Reported medicinal plant in November 2022 to February 2023 (winter season) at Satrod Khurd, Dabra, Tokas, Patan and Mirka villages in Hisar, Haryana.

Sr. No.	Scientific Name	Common Name	Family	Plants Part Used
1	Eucalyptus globulus	Safeda	Myrtaceae	Leaves
2	Triticum aestivum	Knak	Poaceae	Leaves
3	Sorghastrum nutans	Kndai	Poaceae	Root, stem, leaves
4	Rumex crispus	Jangli Palk	Polygonaceae	Aerial part, leaves and root
5	Chenopodium album	Bthua	Amaranthaceae	Leaves
6	Trigonella corniculate	Metha	Fabaceae	Seed and leaves
7	Phalaris minor	Guli danda	Poaceae	Leaves
8	Artemisia campestris	Buer	Asteraceae	Leaves
9	Brassica campestris	Sarso	Brassicaceae	Root
10	Zygophyllum indicum	Bui	Zygophyllaceae	Root
11	Achyranthes aspera	Ulta kanda	Amaranthaceae	See, root and shoot
12	Parthenium hysterophorous	Carrot grass	Asteraceae	Flower extract
13	Polypogon mospeliensis	Annual beard-grass	Poaceae	Leaves
14	Tamarix aphylla	Rukh	Tamariaceae	Leaves and Stem
15	Szygium cumini	Jamun	Myrtaceae	Bark and leaves
16	Indigofera tinctoria	Nil bdi	Fabaceae	Leaf and roots
17	Zizipus mauritiana	Beri	Rhamnaceae	Roots, leaves and fruits
18	Calotropis procera	Aak	Apocynaceae	Leaves
19	Phragmites australis	Common reed	Poaceae	Stem and root
20	Raphanus sativus	Mooli	Brassicaceae	Bulb, seed and leaf
21	Phaseolus vulgaris	Sigre	Fabaceae	Bean pod
22	Solanum tuberosum	Aalu	Solanaceae	Potato skin
23	Lawsonia inermis	Mehndi	Lythraceae	Leaf paste
24	Citrus limon	Desi nimbu	Rutaceae	Fruit
25	Tagetes erecta	Genda	Asteraceae	Flower and leaves
26	Nicotiana tabacum	Tambaku	Solanaceae	Leaves
27	Acacia nilotica	Kikar	Fabaceae	Leaves, bark, seed, root, flower, fruit
28	Aloe vera	Gwar petha	Asphodelaceae	Leaves
29	Manilkara zapota	Chiku	Sapotaceae	Fruit and leaves
30	Albizia lebbeck	Siris	Fabaceae	Leaves
31	Ricinus communis	Arandi	Euphorbiaceae	Leaf, root and seed
32	Carissa carandas	Karonda grass	Apocynaceae	Fruit and leaves
33	Eleusine indica	Jangali marua	Poaceae	Root
34	Heliotropium indicum	Hathajori	Boraginaceae	Root and leaves
35	Amaranthus viridis	Chauli	Amaranthaceae	Seed, Oil and leaf
36	Sonchus arvensis	Dudhi	Asteraceae	Leaves
37	Allium sativum	Lhsun	Amaryllidaceae	Leaves

Table 2: Ethnobotanical plants found in Hisar region, in winter season and their medicinal uses:

Sr.No	Scientific Name	Medicinal uses
1	Eucalyptus globulus	Help in reducing pain, promote relaxation
2	Triticum aestivum	For curing disease such as cancer, diabetes, ulcer etc.
3	Sorghastrum nutans	For Curing skin and eye problems, bleeding disorders.
4	Rumex crispus	Help in the treatment of Jaundice, whooping cough and bleeding
5	Chenopodium album	Used as a blood purifier
6	Trigonella corniculate	Used as gastric stimulant
7	Phalaris minor	Used in hallucinogenic properties as a medication
8	Artemisia campestris	For curing cough, stomach pain
9	Brassica campestris	Reduce skin itching, skin allergic conditions.
10	Zygophyllum indicum	For curing asthma problems
11	Achyranthes aspera	help in the treatment of boils, asthma, bleeding, cold
12	Parthenium hysterophorous	Treat fever, neurological disorders, urinary infections
13	Polypogon mospeliensis	For curing heart problems
14	Tamarix aphylla	Help in preventing kidney and heart disorders
15	Szygium cumini	Used for the treatment of ulcer, throat pain, asthma
16	Indigofera tinctoria	Used for the treatment of liver problems
17	Zizipus mauritiana	Used in liver and cancer treatment
18	Calotropis procera	Used in diarrhoea and skin disease
19	Phragmites australis	Used in the treatment of bronchitis, cholera
20	Raphanus sativus	To treat constipation, chronic tracheitis
21	Phaseolus vulgaris	Used in reducing high cholesterol, diabetes and kidney stonesproblems
22	Solanum tuberosum	Used in the treatment of peptic ulcer and acidity
23	Lawsonia inermis	Used for headache, jaundice
24	Citrus limon	Used in for treat high blood pressure, chest pain, fever
25	Tagetes erecta	Used for digestive tract problems
26	Nicotiana tabacum	Induce vomiting, reduce headache
27	Acacia nilotica	Treating mouth ulcer, burns and wound
28	Aloe vera	For treating skin injuries and digestive problems
29	Manilkara zapota	For treating skin problems
30	Albizia lebbeck	Prevention of lung ailments, abdominal tumors
31	Ricinus communis	Help in reducing gall bladder pain, period pain, menstural cramp
32	Carissa carandas	To treat acidity, anemia, stomach pain
33	Eleusine indica	Used in the treatment of influenza and urinary problems
34	Heliotropium indicum	To treat sore throat and fever
35	Amaranthus viridis	To treat teeth problems
36	Sonchus arvensis	Used for treating kidney disorders
37	Allium sativum	Helps to treat liver problems and diabetes

using the taxonomic literature, flora, Google Lens, and other resources. Data from ethnomedicine were tabulated. From the sides of the road, railway tracks, bare ground, farming fields, etc., ethnomedical plants were gathered.

RESULTS AND DISCUSSION

During this study, thirty-seven species of the plant belong to nineteen families were recorded. These plants are used by the local people of Strod khurd, Dabra, Tokas, Patan and Mirka villages for the treatment of many body problems like heart failure, kidney stones, skin problems, immunity, high level cholesterol, cancer etc. All information like, scientific name, Common name, family, plant part used, medicinal uses and also original plants images is shown in Table 1, 2, and 3. Original plant image of ethnobotanical plants are shown in Fig. 1. Poaceae family (Fig. B, C, G, M, and S) is the dominant family which have six species, Fabaceae Family (Fig. F, U, P, and AA) with five species each, Asteraceae family (Fig. H, L and Y) with four species each,

Table 3: Family wise distribution of species of medicinal plants recorded.

recorded.							
Sr. No.	Family	,	Total				
1	Amara	ınthaceae	3				
2	Amaryllidaceae		1				
3	Аросу	naceae	2				
4	Aspho	delaceae	1				
5	Astera	ceae	4				
6	Boraginaceae		1				
7	Brassicaceae		2				
8	Euphorbiaceae		1				
9	Fabaceae		5				
10	Lythraceae		1				
11	Myrtaceae		2				
12	Poaceae		6				
13	Polygonaceae		1				
14	Rham	naceae	1				
15	Rutace	eae	1				
16	Sapot	aceae	1				
17	Soland		2				
18		riaceae	1				
19	Zygop	hyllaceae	1				
Fig-A - Eucalyp		Fig-B- Triticum aestivum Fig-E- Chenopodium album	Fig-C-Sorghastrum mutans Fig-F-Trigonella corniculate				
Fig-G-Phalaris	ninor	Fig- H- Artemisia campestris	Fig- I- Brassica campestris				

Fig- L- Partheniu

Fig- K- Achyranthes aspera

Figure 1: Ethnobotanical plants found in hissar

Amaranthaceae (Fig. E and K) with three species each, Myrtaceae (Fig. A and O), Brassicaceae (Fig. I and T), Apocynaceae (Fig. R) and Solanaceae (Fig. V and Z) with two species each, Polygonaceae (Fig. D), Zygophyllaceae (Fig. J), Tamariaceae (Fig. N), Lythraceae (Fig. W), Rutaceae (Fig. X), Rhamnaceae (Fig. Q) Asphodelaceae, Sapotaceae, Euphorbiaceae, Boraginaceae and Amaryllidaceae with one species each. Important parts like leaves, bark, root, stem, fruit, flower, seeds, pods, twigs were used for the treatment of many diseases. Mostly plants are used for the treatment of for more than one disease like Achyranthes aspera, Ricinus communis, Allium sativum, Parthenium hysterophorous etc. These data recorded during the study was compared with the related literature, research paper, websites etc.

Conclusion

During the study, Field checks and in-depth interviews conducted in the fields between 2022 and 2023 were used to gather the data. It has been realized that medicinal plants will play an important role in the future of the medical system. The current study contains thorough ethnomedical information, including common and botanical names, family names, pharmaceutical delivery methods, lozenge dosage forms, and ailments addressed. Poaceae family is the dominant family which have six species, Fabaceae with five species each; Asteraceae with four species each; Amaranthaceae with three species each; Myrtaceae, Brassicaceae, Apocynaceae and Solanaceae with two species each; Polygonaceae, Zygophyllaceae, Tamariaceae, Lythraceae, Rutaceae, Asphodelaceae, Sapotaceae, Euphorbiaceae, Boraginaceae and Amaryllidaceae with one species each. It was determined that this region still has a wealth of practical ethnomedical expertise and may contribute to further herbal medicine development programs.

ACKNOWLEDGMENT

All author are grateful to the RNB Global University, Bikaner for providing laboratory facilities in conducting the experimental work. We are also thankful to Dr Mool Chand Mali for facilities and encouragement during manuscript compilation and finalization by the author. Authors are also grateful to all those who help to collect the sample form Hisar.

AUTHOR CONTRIBUTION

Gajanand Modi and Babita conceived the idea and designed the experiments. Babita collect the sample form experimental site and data analysis by Gajanand Modi. Gajanand Modi and Babita prepared the manuscript, read and approved the manuscript.

CONFLICTS OF INTEREST

None.

REFERENCES

- Arora, B., Babita, Modi G., & Bhardwaj N. (2023). Transgenic Approaches in the Improvement of Seed Oil and Quality in Oil Seed Crops IJFMR 5(1); 14675. https://doi.org/10.36948/ijfmr.2023.v05i01.1467
- Awoyemi, O. K. Ewa, E.E., Abdulkarim, I. A., & Aduloju, A. R. (2012). Ethnobotanical assessment of herbal plants in south western Nigeria. Academic Research International. 5(2), 50-57
- Babita, Modi, G., Arora, B. & Bhardwaj, N. (2023). Zinc oxide nanoparticles in alleviation of toxicity induced by heat stress in plants. IJFMR 5(1); 1468. https://doi.org/10.36948/ijfmr.2023.v05i01.1468
- Jain, S. K. (1995). Ethnobotanical diversity in Zingibers of India. Ethnobotany, 7(1-2), 83-88.
- Jain, S. P., & Verma D. M. (1987). Medicinal plants in the folklore of north-east Haryana. Nat. Acad. Sci. Newsletter 4(7): 263-270.
- Jain, S. K. (2010). Ethno-botany in India: some thoughts on future work .Ethno-botany, 22: 0104
- Jitin, R. (2013). An Ethnobotanical Study of Medicinal Plants in Taindol Village, District Jhansi, Region of Bundelkhand, Uttar Pradesh, India. Journal of Medicinal Plants Studies.; 1(5):59-71.

- Joshi, P. (1995). Ethnomedicine of tribal Rajasthan–an overview, Glimpses of India, Ethnopharmacol, 147.
- Lal, S. D. & Yadav, B. K. (1983). Folk medicines of Kurukshetra district (Haryana), India. Econ. Bot. 37(3): 299-305.
- Mac Donald, I. (2009). Current trends in ethnobotany. Trop J Pharm Res.; 8(4): 295-297.
- Modi, G., & Babita. (2023). "Study of ethnobotanical plants found in Mirka, Tokas and Patan Villages in Hisar district, Haryana". International journal of advances in engineering and Management (IJAEM); 5(2); 2395-5252: 111-121. DOI: 10.35629/5252-0502111121
- Modi, G., & Babita. (2022). Study of Ethnobotanical Plants Found in Satrod Khurd and Dabra villages in Hisar. International Journal of Research and Analytical review (IJRAR). 9(3): 439-451.
- Negi, V. S., Maikhuri R. K., Mehlta, A., & Pandhoni, P. C. (2019). Ethnobotanical Knowledge and Population Density of Threatened Medicinal Plants of Nanda Devi Biosphere Reserve, Western Himalaya, India. Iran J. Sci. Technol. Trans. Sci. 43, 63–73.
- Panghal M., Arya. V., & Yadav, J. P. (2010). Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India. J Ethnobiol Ethnomed; 6:4. 10.1186/1746-4269-6-4
- Parkash. V., & Aggarwal. A. (2010). Traditional use of ethnomedicinal plants of lower foot-hills of Himachal Pradesh-I. Indian Journal of Traditional Knowledge.; 9(3):519-521.
- Rana, S.K., O'Neill, A. R., Badola H. K., & Dhyani, P. P. (2017). Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas. J. Ethnobiol. Ethnomed. 13, 21.
- Rani, R. Sidhu, H., & Kumar, P. (2020). An Ethno-botanical study of flora in Hisar district of Haryana, India. 9. 99-103.
- Rathore, V., & Gupta, D. (2013). In vitro clonal propagation of Solanum nigrum. Research Journal of Chemical and Environmental Sciences: 1 (2), 32-33
- Samy. R. P., & Gopalakrishnakone, P. (2007). Current status of herbal medicines and their future perspectives. Nat Proc; 1176:1-13. 10.1038/ npre.2007.1176.1
- Sandhya. B., Thomas. S., Isabel. W., & Shenbagarathai. R. (2006). Ethnomedicinal plants used by the Valaiyan community of Piranmalai hills (Reserved forest), Tamilnadu, India. - A pilot study. Afr. J. Tradit Complementary Altern Med.; 3(1):101-114. 10.4314/ajtcam.v3i1.31145
- Sanadya, S. K., Shekhawat, S. S., Saho, S. & Kumar, A. (2018). Variability and inter-relationship of quantitative traits in sewan grass (Lasiurus sindicus Henr.) accessions. International Journal of Chemical Studies, 6 (6): 1843-1846.
- Shah, N. C., & Joshi. M. C. (1971). An Ethnobotanical study of Kumaon region of India. Economic Botany 35:414-422. DOI- 10.1007/BF02985209
- Sharma, S., Roy, S., Raghuvanshi, R. K., & Kumar, A. (2012). Ethnobotanical studies on some Medicinal plants: Cassiaspp. The Journal of Ethnobiology and Traditional Medicine. Photon.; 117:162-166.
- Shastri, K., Chaturvedi, GN., & Charak, D. (1996). The Charak Samhita. Chukhamba Bharti Acedemy, VaransiSastri R, Uppadhayaya Y, Pandeya GS, Gupta B, Mishra B, 22.
- Soni, R. K. & Koli, N. R. (2022). Analysis of Combining Ability for Yield and Yield Components in Paddy using Line × Tester design under South Eastern Rajasthan. Biological Forum – An International Journal: 14 (1): 308-312
- Uniyal, S. K., Singh, K.N., Jamval, P., & Lal, B. (2006) Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed. 20;2:14. doi: 10.1186/1746-4269-2-14
- Verma, S., & Singh. S. P. (2008). Current and future status of herbal medicines. Vet World.; 1(11):347-350.
- Yadav, S. S., & Bhandoria, M. S. (2013). Ethnobotanical exploration in Mahendergarh district of Haryana (India). Journal of medicinal Plants Research.; 7 (18):1263-1271. https://doi.org/10.5897
- Yadav, S. S. Bhandoria, M. S., Guliya, S., & Ganaie S. A. (2017). Floristic Inventory of Village Ponds of Southern Haryana, India. Plant Arch. 17 (1) 681-690.