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Ab s t r Ac t
Phenotyping plays an important role in agricultural research for determining the various traits of plants. To investigate the inheritance 
and expression patterns of the genome and discover how genomic and phenotypic information is related to boosting agricultural 
output, it is important to precisely and rapidly gather phenotypic information of plants or cells in various conditions. Manually measuring, 
processing, and analyzing the data of plant phenotypes such as yield, biomass, leaf color, size, plant height, chlorophyll, and density is a 
laborious and time-consuming procedure. To overcome such issues and precisely execute high-throughput phenotyping and analysis, 
unmanned aerial vehicles (UAVs) have been developed. This review focuses on the benefits of UAV-based remote sensing of various 
features utilizing different phenotyping sensors. The phenotyping sensors and UAV platforms are briefly introduced in this study. A 
more thorough introduction and summary of the uses of UAVs to collect and evaluate plant phenotypic characteristics is provided. 
Furthermore, the future prospects and the challenges of phenotype information through UAVs are also discussed. It aims to inform 
readers and researchers about the existing uses of UAVs for high-throughput phenotyping as well as the methodology used in the 
studies. The review proposes the applications of UAVs for advancements in agriculture to meet future needs.
Keywords: Plant Phenotyping; Remote Sensing; Unmanned Aerial vehicles (UAVs)
Highlights:
• High-throughput phenotyping is useful in plant characterization.
• UAVs are handy tools for precise phenotyping of a large number of plants.
• A variety of sensors can be used to phenotype plants.
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In t r o d u c t I o n

Unmanned aerial vehicles (UAVs) are a topic of interest among 
scientists and commercial industries in the agricultural 

sector owing to their vast potential shortly (Guo et al., 2024). 
This newly developing technology can give the necessary 
throughput and precise description of traits in cropping systems 
and it is thus becoming widely accepted. Natural conditions 
are essential for the proper evaluation of crop productivity. 
Nowadays most field-based phenotyping systems use ground 
and aerial remote sensing approaches. For ground vehicles, 
the process of collection of data is very time-consuming when 
the number of samples is very large along with the number of 
plots in which the plants are planted. To overcome the problem 
additional vehicles and sensors can be used but it increases 
the cost.

For a quick and non-destructive estimate of crop attributes, 
the cable-suspended f ield phenotyping platform was 
created recently. There are benefits of safety, high accuracy, 
independence from soil conditions, and minimum tactile 
disturbance of plants for the cable-suspend field-based 
phenotyping platform. However, because it must be situated 
at certain locations, the cable-suspend field phenotyping 
platform’s coverable area is very small, which restricts its use 
for large-scale phenotyping (Peng et al., 2025). The use of 
satellite imaging technologies in data collecting for a range of 
agricultural applications has grown significantly. However, it 
suffers from the high costs of satellite sensors, the lack of spatial 

resolution needed to identify desired qualities, particularly in 
the conditions of bad weather, and the interval time between 
one to visits the satellite is long. 

Since its commercial introduction in the early 1980s, 
unmanned aerial vehicles (UAVs) have seen a sharp rise in 
utilization across several sectors. UAVs have been successfully 
used for a variety of purposes, including traffic surveillance, 
disaster management, agriculture and forest monitoring, 
and photogrammetry for 3D modeling. UAV imagery paired 
with machine learning models delivers more precise, quick, 
non-destructive data collection and automated analysis 
capabilities (Sun et al., 2024). Understanding plant growth and 
development helps crop managers and plant breeders enhance 
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crop productivity and precision agriculture while also examining 
how plants react to various management scenarios (Tunca 
et al., 2023). In this timely review, the most recent technical 
developments for UAVs for estimating plant phenotypic 
characteristics at the field size are discussed. 

Me t h o d o lo g y

The articles reviewed in this paper were searched from 
ScienceDirect and Google Scholar. The keywords UAVs, 
unmanned aerial vehicles, and phenotyping and agriculture 
were used. A total of 697 articles from ScienceDirect and 8,320 
from Google Scholar websites were generated for the period 
of 5 years from 2019 to 2023. So, a total of 9,017 articles were 
published from 2019 to 2023. Based on the analysis, UAVs and 
remote sensing technologies are developing very rapidly for 
crop phenotyping and monitoring purposes providing precise, 
safe, and minimum plant tactile interference. The key articles 
from the searched ones were used for presenting the topic in a 
clear, short, and concise manner presenting the technique and 
its advancements.

hI g h t h r o u g h p u t ph e n ot yp I n g

The word pheno means observable or visible, and the word 
typing refers to categorization or measurement, thereby giving 
the meaning “measurement and categorization” of visible 
and observable traits of plants. Plant growth, development, 
and physiology are measured via phenotyping, which is the 
result of interaction between the  genotypes of plants  and 
the surrounding environment. Examples of these interactions 
include the photosynthetic mechanism and efficiency, growth 
and development rate, disease resistance, morphology, abiotic 
stress tolerance, yield and produce, etc. It is generally performed 
to identify important alleles and related genetic markers 
influencing variables associated with yield, biotic and abiotic 
stress tolerance, and other beneficial agronomic characteristics 
(Hickey et al., 2019; Kim, 2020). Simple traits like plant height can 
be phenotyped in a fair period by people without specialized 
expertise. However, it takes a lot of time and requires the 
knowledge of experienced people to evaluate more complex 
features, particularly those connected to drought or, heat 
tolerance, or any other abiotic stress. Furthermore, it is often not 
feasible to phenotype a big collection of genotypes in a desired 
time frame. Additionally, traditional phenotyping has a high 
chance of measurement mistakes, which can be made worse 
by weariness and are subject to personal interpretation by each 
person, leading to no improvement in plants (Araus et al., 2022). 

The rapid development of phenomics with the integration 
of remote sensing and data science is making High Throughput 
Phenotyping (HTP) technology a trend as well as a need today. 
The automatic and non-invasive phenotyping system, having 
the capacity for automated data collection its processing, along 
with analysis and visualization, is called as High-throughput 
plant phenotyping. HTP is the solution to the labor and time-
intensive problem of phenotyping and also provides accuracy 
and precision. The characteristics that can be phenotyped can be 
divided into morphological characteristics (stem diameter, leaf 
length, stalk length, width, canopy cover, etc.) and physiological 

characteristics (NDVI, Chlorophyll content, biomass, etc.). The 
drawback of morphological characters is that they only apply 
to the exterior phenotyping of plants, which is inadequate to 
precisely give insights about factors like water and nutrient 
content. All of the internal processes that occur in plants, such 
as photosynthesis, environmental stress, plant nutrition, etc., can 
be analyzed and understood by physiological phenotyping. For 
a plant’s overall development and for the identification of genes 
to combat current environment and population concerns, it is 
essential to conduct HTP of multiple quantitative traits involving 
both physiological and morphological ones (Großkinsky et al., 

2015; Ma et al., 2022).
A HTP system contains components that are interconnected 

and have several functions to measure the quantitative trait 
accurately. These components are platform, sensor, data and 
analysis (Figure 1). Platforms can be ground-based, aerial or 
satellite. Sensors are used for data acquisition (DAQ) and are 
associated with quality assurance (QA) or quality check (QC). 
Image processing and modeling help in the visualization and 

Fig. 1: A depiction of various components of HTP system that 
includes platform, sensors, data management and analysis
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standardization of the collected data (Kim, 2020). Platforms 
for HTP combine a control terminal, data-gathering hardware, 
and data-processing software. They primarily use non-invasive 
imaging and spectroscopy methods to gather phenotypic 
data, and  high-performance computational tools to quickly 
assess plant growth activities and physiological condition 
of the plant. HTP, as opposed to conventional phenotyping 
techniques, enables the dynamic monitoring of plants at 
various growth stages as well as the simultaneous data 
collection of many attributes in huge populations. In addition, 
the classification of traits based on spectra or images is more 
reliable than conventional techniques like visual scoring, 
which are prone to subjective interpretation. Furthermore, it 
enables model-based non-destructive estimates of biochemical 
parameters,  minimizing  the need for time-consuming 
procedures (Xiao et al., 2022).

Unmanned Aircraft Systems (UAS)
Unmanned aircraft systems (UAS) have recently opened the 
door for the rapid development and better understanding of 
field high-throughput phenotyping for crops. It generally starts 
with an unmanned aerial vehicle (UAV) or drone that has a range 
of sensors and payloads intended to collect comprehensive 
data on plant properties (Figure 2). To collect information that 
can’t be extracted from the human eye, such as infrared and 
ultraviolet data, which is essential for determining plant health 
and growth, these sensors frequently integrate multispectral 
or hyperspectral cameras. The UAS may also include GPS and 
navigational devices for accurate placement, enabling data 
georeferencing. Additionally, cutting-edge data processing and 
analysis software is a must since it makes it possible to extract 
useful data from the gathered aerial pictures (Ayankojo et al., 

2023; Delavarpour et al., 2021). 
Careful flight path planning using the ground control points 

(GCP), altitude, and timing of UAV missions is the first step in this 
process. At this stage, variables such as the outside temperature, 
the lighting, and the specific objectives, as per the parameter 
to be monitored, are taken into account. The choice of sensors 
is based on the objectives of the study, and they are configured 
and placed accordingly. The sensors collect data when the UAV 
is in flight as it follows the pre-planned flight path. To produce 
a complete dataset, the sensors gather pictures as well as other 
pertinent information, such as the GPS coordinates and altitude. 
The images obtained and sensor data are georeferenced using 

the GPS and GCP data that was gathered during the flight, 
guaranteeing that all information is precisely positioned inside 
the research area. To account for elements like atmospheric 
conditions, sensor noise, and geometric distortions, color, 
and spectral calibration, pre-processing may be necessary 
for the raw data from the sensors. This process makes sure 
the data is accurate and acceptable for analysis. Individual 
images are stacked together  to form a single, complete 
dataset for multispectral or hyperspectral photography 
that covers the whole research region. To provide a more 
comprehensive knowledge of plant development and health, 
phenotypic data from UAV-based sensors can be combined 
with additional datasets such as ground-based measurements, 
meteorological data, and historical information. To simplify the 
modeling for plant phenotyping, algorithms (classification, 
regression, and cluster) are required after data collection 
(Figure 3). Researchers evaluate the retrieved phenotypic data 
using statistical and machine-learning approaches to find 
relationships, trends, and patterns that might guide decisions 
about agriculture, breeding, and research. (Ayankojo et al., 2023; 
Guo et al., 2021; Xie & Yang, 2020).

The advantages of unmanned aircraft systems (UAS) for 
plant phenotyping include their relatively low acquisition 
and deployment costs, simplicity and adaptability in control 
and operation, flexibility in reconfiguring sensor payloads to 
broaden sensing, and its ability to integrate easily into larger, 
interconnected phenotyping networks (Xie & Yang, 2020; G. 
Yang et al., 2017).

Sensors used in UAVs
There are various sensors used in UAVs, which are described in 
the following section.

RGB digital Imaging
The RGB imaging technique is the most frequently used in UAVs. 
The sensor’s benefits include inexpensive cost, convenient 
operation, lightweight, and straightforward data processing. 
Both bright and overcast situations can be used to gather 
data; however, exposure should be regulated according to the 
weather to prevent insufficient or excessive image exposure. Due 
to the robust hardware interaction with the UAS system, the RGB 
photos are geotagged with onboard GPS information. By doing 
this, geo-registration-related difficulties beyond the line are 

Fig. 2: Various types of UAVs in common practice and in 
developmental stages.

Data collection -> Data transfer -> Integration to metadata -> Upload to 
cloud and local storage -> Data quality control -> Data storage in 

database -> Data processing and analytics

Fig. 3: A depictive workflow of collection, management and 
processing of data collected with the use of UAVs.
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reduced(Guo et al., 2021; G. Yang et al., 2017). Unfortunately, the 
constraint of the less visible light bands prevents this approach 
from correctly analyzing crop phenotypic data for physiological 
parameters. 

Multispectral Imaging
Multispectral cameras are those that can capture images of 
the electromagnetic spectrum at just a few wavebands (often 
between 3 and 10). Cameras that scan the red, green, and blue 
bands as well as the near-infrared and red edge bands, have 
been employed extensively in plant studies. This is due to the 
reflectance of chloroplast peaks in the near-infrared band (at 
about 850 m) and shifts at the red edge (at about 700 m) band. 
Thus, one may calculate other vegetation indicators by mixing 
these bands (Guo et al., 2021; Jones & Vaughan, 2010; Seager 
et al., 2005).

Hyperspectral Imaging
Hyperspectral cameras are those that can capture images across 
a wide range of electromagnetic spectrum wavebands that can 
reach up to 200 to 300. Both the single plant size and the field 
scale are the standard scales for using hyperspectral cameras. 
Because they cover a larger portion of the electromagnetic 
spectrum, HS cameras have several benefits over other imaging 
modalities. The biophysical and biochemical characteristics of 
crop species may be understood physiologically with the use of 
HS cameras, which can also identify biotic and abiotic stressors 
(Krause et al., 2019; Nagasubramanian et al., 2019).

Thermal Imaging
The infrared portion of an object’s electromagnetic spectrum 
is measured using thermographic imaging. This is crucial 
from a physiological perspective because healthy plants, and 
particularly leaves, produce light in the infrared region of the 
spectrum. The infrared emission profile of the canopy can be 
indirectly linked to a number of biotic and abiotic stressors. 
This is due to the possibility that stressors (such as heat, 
drought, and biotic) might modify rate of photosynthesis and 
transpiration owing to variations in water uptake and gas and 
water exchanges, which would impact the canopy temperature 
and thus the thermal signature. Thus, thermal imaging may be 
used as a high-throughput technique to evaluate the plant’s 
physiological state. However, the usage of thermal cameras 
on UAS has been very rare because of issues with hardware 
integration, camera cost, poor frame rate acquisition, and 
resolution compared to RGB imaging (Guo et al., 2021; Xie & 
Yang, 2020).

LiDAR
LiDAR is a technique for surveying and imaging that uses laser 
light to measure a target’s distance. It is used as a device that 
employs the photoelectric detecting technique and uses a 
laser as the transmitting light source. The advantages of LiDAR 
over traditional microwave radar are numerous and include a 
high point density and spatial resolution, a smaller and lighter 
body, and superior performance for low-altitude detection. 
LiDAR is comprised of a transmitter, receiver, tracking system, 
and information processing module. The pulse after emission 
interacts with the canopy and various components return 

different sections of it. The time difference between these 
portions gives information about the characteristics of the 
horizontal as well as vertical canopy structure (Wallace et al., 
2012; Yang et al., 2017).

Microwaves
Remote sensing are based on optical, thermal infrared, and 
microwave sensors. Microwave remote sensing can easily 
penetrate clouds and fog and thus obtain properties of surface 
and soil very accurately (Dong et al., 2020). The information of 
soil moisture and surface qualities like roughness and relief 
can help in crop management. However, there are issues 
with microwaves as in the presence of vegetation on land, it 
is not able to penetrate and therefore, soil information from 
microwaves lacks accuracy in planted lands (Wu et al., 2024).

Data collection and processing
Before data collection, the type of camera and UAV platform 
must be chosen based on specifications and budget. The 
remote-control device is used to regulate the UAV’s flying speed, 
flying direction, flying distance, and other characteristics. The 
memory card of the camera holds the gathered data, which may 
be removed and linked to a computer for additional processing. 
Pre-processing of the raw image data is necessary for image 
correction, format conversion using proprietary software 
for a particular sensor, ortho-mosaicking, secondary band 
registration, and, if required, radiometric calibration to transform 
pixel values from digital numbers to reflectance and brightness 
adjustment to reduce the cloud shadow effect (Shi et al., 2016).

The pre-processing of remote sensing images is done by 
geometric and radiometric correction. Due to the UAV platform’s 
height and speed, geometric correction is required to assign 
the correct elevation to the observed features. Owing to the 
air circumstances, sensor physical properties, the location of 
the sun, and measurement angle, the electromagnetic energy 
detected by the UAV deployed sensors might be different than 
the actual radiation spectrum of the target. Therefore, radiation 
correction is necessary to remove or correct the measurement 
error (Su et al., 2019).

Applications of high-throughput phenotyping 
Biomass measurement
Biomass has been measured by using RGB images in wheat, 
barley, pea, oat and other plants. In pea and oat, RGB images 
were obtained and the normalized green-red difference index 
(NGRDI) was calculated to monitor and estimate the phenology 
of the vegetation and above-ground biomass. Based on the 
results obtained, spatial variability maps have been created 
showing biomass, which helps farmers and researchers in the 
site-specific management of crops. The RGB camera on the 
UAV platform was also used to estimate the biomass of maize. 
A random forest (RF) model was used to predict results and 
generate spatial patterns of biomass. This was used to monitor 
the crop changes taking place in a field and find corresponding 
suitable strategies to use the change for benefit (Brocks & Bareth, 
2018; Jannoura et al., 2015;  Li et al., 2016; Schirrmann et al., 2016; 
Xie & Yang, 2020). Using GRID software, alfalfa plot pictures were 
extracted to calculate the amount of vegetation based on the 
normalized difference vegetation index (NDVI) (Tang et al., 2021).
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Yield estimation
To estimate the rice yield, multispectral images using a radio-
controlled unmanned helicopter were collected to calculate 
the NDVI. A spectroradiometer was used to obtain spectral 
reflectance at ground level, which exhibited a strong correlation 
for yield. UAV-based RGB sensor was used to estimate corn yield 
where different models were established using vegetation 
indices. In the case of maize, multispectral images were obtained 
using UAV to observe maize growth at different phosphorous 
fertilizations. The results obtained demonstrated a strong 
correlation between indices calculated and yield, along with a 
strong correlation with leaf phosphorous content. UAV-based 
multispectral images were obtained for sunflower plant to 
estimate its yield, nitrogen content and biomass (Geipel et al., 
2014; Gracia-Romero et al., 2017; Vega et al., 2015; Xie & Yang, 
2020). Utilizing UAV data, the growth model Gramineae (GRAMI)-
rice was effectively deployed to forecast rice yield. To accurately 
anticipate yields, however, much more study is required to 
determine the ideal sensor setup, flight schedule, and crop 
growth model adjustments (Liu et al., 2018; Maes & Steppe, 2019).

Leaf area index (LAI), plant height, and canopy cover
The sorghum leaf area was estimated using multispectral 
images taken by the sensors installed on the UAV. NDVI and 
enhanced vegetation index (EVI) were calculated and showed 
high correlation with the leaf area index. Along with it, the 
normalized difference red edge index (NDRE) was calculated 
to monitor the senescence pattern, which showed a strong 
correlation with chlorophyll content, which can be used as a 
good indicator for photosynthetic capacity. LAI is also a crucial 
factor in the determination of canopy cover, which could also be 
predicted with the data (Potgieter et al., 2017; Xie & Yang, 2020). 

In the case of wheat, the booting and mid-grain fill 
periods of crop growth were assessed effectively with the 
help of UAVs. Using a computerized surface model it offered 
an efficient and quick way to measure the height of plants. To 
identify quantitative trait loci (QTL) linked to plant height, and 
improve comprehension of growth dynamics, this data was 
then incorporated into genetic studies and wheat breeding 
programs. This led to more effective wheat breeding for 
increased yield potential and lodging resistance (Hassan et al., 
2019). To estimate wheat height, RGB images taken from UAV 
platform were used to map the spatial variability of crop height. 
Olive tree height, along with its crown diameter, was estimated 
using UAV-based RGB sensors. Monitoring these traits helps find 
new cultivars for the breeding programs. In maize, to estimate 
the canopy cover and senescence, RGB images were taken from 
UAV-based sensors to understand and monitor crop response, 
facilitating the plant breeding techniques (Aasen et al., 2015; 
Díaz-Varela et al., 2015; Holman et al., 2016; Madec et al., 2017; 
Makanza et al., 2018; Xie & Yang, 2020).

Nitrogen and Chlorophyll Content
In the cotton plant, multispectral images were taken with the 
help of UAV platforms to calculate various indices to understand 
the temporal and spatial variability of nitrogen content in the 
plant. Similarly, in the case of maize also, multispectral sensors 
placed on UAV were used to assess the spatial variability and 

low nitrogen tolerances. NDVI of turfgrass plant was calculated 
using images obtained from UAV-based multispectral sensors 
along with a handheld sensor and the correlation between the 
two was established. The results showed a strong correlation and 
demonstrated that the UAV method can be useful in diagnosing 
low nitrogen content in the plant. To assess nitrogen status in 
the rice canopy, RGB sensors placed on UAV were used and 
the nitrogen balance index (NBI) was calculated. Results gave 
a strong correlation between calculated and ground-based 
indices, proving UAV a potential tool to be used in the field. RGB, 
multispectral and thermal sensors placed on UAV were used 
to estimate chlorophyll content in soybeans, along with other 
biochemical and physical traits. Results showed that the fusion 
of data predicts best the condition and status of chlorophyll 
in plants. (Ballester et al., 2017; Caturegli et al., 2016; J. Li et al., 
2015; Maimaitijiang et al., 2017; Xie & Yang, 2020; Zaman-Allah 
et al., 2015). It was discovered that certain specific color bands 
were strongly related to the quantity of chlorophyll in potato 
leaves and canopies using the hyperspectral sensors on UAVs. 
The accuracy of estimating oat chlorophyll levels and soybean 
chlorophyll and nitrogen contents improved with the fusion of 
thermal data with these. This shows that hyperspectral data can 
offer more precise and in-depth insights about the health and 
nutrient levels of crops when paired with thermal data, which 
is beneficial for enhancing agricultural practices (Domingues 
Franceschini et al., 2017; Elarab et al., 2015; Liu et al., 2017; Maes 
& Steppe, 2019; Maimaitijiang et al., 2017).

Weed Detection
UAVs are an excellent way to precisely map weed infestations 
in fields since they are frequently not distributed uniformly and 
allow for targeted weed treatment. The technique, commonly 
known as spectral discrimination, makes use of distinctions 
in the colors of crops and weeds. If the weeds and crops 
have distinct color variations, even standard RGB cameras 
can be employed (Maes & Steppe, 2019; De Castro et al., 2018; 
Tamouridou et al., 2017). 

Other biotic and abiotic stress
It was found that under drought circumstances, dry bean seed 
yield and biomass outputs were substantially connected with 
the canopy area and the green normalized difference vegetation 
index (GNDVI). Therefore, in the conditions of drought, GNDVI 
may be a reliable indication of both the yield as well as biomass 
of dry beans. This study also discovered that thermal imaging 
might be used to assess variations in stress-induced canopy 
temperature (Ayankojo et al., 2023; Sankaran et al., 2018). High-
yielding accessions in salt-stressed tomatoes were identified 
using UAS-based RGB and multispectral data, while the link 
between water stress and the canopy temperature in the plant 
of soybean and sorghum was determined using thermal imaging 
(Johansen et al., 2019; Sagan et al., 2019). Crop disease monitoring, 
detection, and classification have all been accomplished with 
the use of remote sensor imaging, a few examples being 
maize streak virus disease, late blight disease in potatoes  , 
etc. Contrary to multispectral and hyperspectral sensors, RGB 
sensors frequently exhibit inferior disease detection accuracy. 
In general, UAS technology offers a tremendous possibility for 
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rapid disease categorization and identification of agricultural 
illnesses for breeding decision-making as well as early disease 
detection for prompt disease response (Ayankojo et al., 2023). 

Challenges and Future Perspectives
The UAVs face several challenges for plant phenotyping that 
need to be researched in the future to enhance the usage of 
UAVs in agriculture.
• Cost: The high cost of UAVs is a major constraint in their 

widespread usage, particularly in developing countries. 
Multispectral and hyperspectral sensors are relatively 
expensive as compared with the RGB cameras. Further, 
in case of accidental crashes of UAVs, high economic loss 
would occur. Thus, the cost and operational risks linked to 
UAVs need to be brought to an acceptable level. 

• Analysis of the data: Since pictures make up the majority of 
the data gathered by the UAV remote sensing system, image 
analysis techniques need to be easy and user-friendly. 
Typically, image collection, segmentation, and classification 
require high-capacity computation and data storage for 
phenotypic platforms due to enormous volumes of pictures 
and data. The effectiveness and functionality of image 
processing, particularly the field software’s capacity for 
quick processing, are insufficient in comparison to the fast 
growth of sensor and hardware platforms (Yang et al., 2017).

• Environmental factors: Environmental elements, such as 
noise, sun condition, wind, and soil conditions, among 
others, have an impact on the phenotyping analysis when 
UAVs are in flight. Some environmental elements will have 
an impact on the findings when assessing crop height, yield, 
biomass, and other features. More precise models need to 
be developed in the future to counteract environmental 
factors effect (Lelong et al., 2008).

• Accurate measurement of ground data: The classification 
results are also influenced by the accuracy of ground data 
measurement. Although data may be collected using UAV-
based remote sensing at a lower height, not every plant’s 
phenotyping attribute can be measured. Choosing samples 
from the chosen region of interest and using its average 
characteristics as the analysis’s reference values is a frequent 
practice. Therefore, it is crucial to precisely quantify the 
phenotyping features. For ground measurement, a scientific 
sample of the plants is essential.

co n c lu s I o n

In high-throughput plant phenotyping, the use of UAVs has 
proved to be helpful and a wide range of uses in agriculture 
have been demonstrated, including benefits like effectiveness, 
affordability, adaptation to challenging field conditions, and 
high-resolution data collecting. For field-based phenotyping, 
sensors useful in digital or RGB imaging, multispectral imaging, 
hyperspectral imaging, thermal imaging, and LiDAR imaging 
techniques are frequently employed. Current research focuses 
on multi-sensor integration and improved data processing 
algorithms. Geometrical attributes, canopy spectral texture, 
physiological characteristics, stress responses, nutritional 
status of plants, and yield prediction are just a few of the crop 
phenotypic parameters that UAVs have the potential to gather. 

Validation across several crop kinds is still scarce, though. 
There are also difficulties, such as restrictions on UAVs, strict 
rules governing airspace, delays in data processing, and the 
requirement for models to predict complicated features under 
various environmental circumstances. Research trends should 
go in a direction that  includes  improving UAV performance, 
decreasing sensor prices, speeding up data processing, and 
improving crop phenotypic analysis via remote sensing. As 
UAV technology develops, sensor costs fall and regulatory 
frameworks become more flexible, and a wider range of UAV-
based field phenotyping applications are anticipated to become 
possible.
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